




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1利用利用MATLAB进行多元线性回归进行多元线性回归回归模型 例3: 血压与年龄、体重指数、吸烟习惯 序序号号 血血压压年年龄龄体重体重指数指数吸烟吸烟习惯习惯 序序号号 血血压压年年龄龄体重体重指数指数吸烟吸烟习惯习惯11443924.20211363625.0022154731.11221425026.2131384522.60231203923.50101545619.30301756927.41体重指数 = 体重(kg)/身高(m)的平方 吸烟习惯: 0表示不吸烟,1表示吸烟 建立血压与年龄、体重指数、吸烟习惯之间的回归模型第1页/共15页模型建立血压y,年龄x1,体重指数x2
2、,吸烟习惯x3 3322110 xxxyy与x1的散点图y与x2的散点图线性回归模型回归系数0, 1, 2, 3 由数据估计, 是随机误差 第2页/共15页n=30;m=3;y=144215138145162142170124158154 162150140110128130135114116124 136142120120160158144130125175;x1=39474547654667426756 64565934424845182019 36503921445363292569;x2=24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3
3、 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4; x3=0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 .0 0 1 0 0 1 1 0 1 0 1;X=ones(n,1), x1,x2,x3;b,bint,r,rint,s=regress(y,X);s2=sum(r.2)/(n-m-1);b,bint,s,s2rcoplot(r,rint)第3页/共15页回归系数回归系数回归系数回归系数估计值估计值回归系数回归系
4、数置信区间置信区间 045.36363.5537 87.1736 10.3604-0.0758 0.7965 23.09061.0530 5.1281 311.8246-0.1482 23.7973R2= 0.6855 F= 18.8906 p0.0001 s2 =169.7917模型求解回归系数回归系数回归系数回归系数估计值估计值 回归系数回归系数置信区间置信区间 058.510129.9064 87.1138 10.43030.1273 0.7332 22.34490.8509 3.8389 310.30653.3878 17.2253R2= 0.8462 F= 44.0087 p0.00
5、01 s2 =53.6604剔除异常点(第2点和第10点)后xueya01.m3213065.103449. 24303. 05101.58xxxy第4页/共15页第5页/共15页 此时可见第二与第十二个点是异常点,于是删除上述两点,再次进行回归得到改进后的回归模型的系数、系数置信区间与统计量回归系数回归系数回归系数回归系数估计值估计值回归系数回归系数置信区间置信区间 058.510129.9064 87.1138 10.43030.1273 0.7332 22.34490.8509 3.8389 310.30653.3878 17.2253R2= 0.8462 F= 44.0087 p0.0
6、001 s2 =53.6604这时置信区间不包含零点,F统计量增大,可决系数从0.6855增大到0.8462 ,我们得到回归模型为:3213065.103449. 24303. 05101.58xxxy 第6页/共15页通常,进行多元线性回归的步骤如下:(1)做自变量与因变量的散点图,根据散点图的形状决定是否可以进行线性回归;(2)输入自变量与因变量;(3)利用命令:b,bint,r,rint,s=regress(y,X,alpha),rcoplot(r,rint)得到回归模型的系数以及异常点的情况;(4)对回归模型进行检验首先进行残差的正态性检验:jbtest,ttest第7页/共15页其次
7、进行残差的异方差检验: 戈德菲尔德一匡特(GoldfeldQuandt)检验戈德菲尔德检验,简称为GQ检验.为了检验异方差性,将样本按解释变量排序后分成两部分,再利用样本1和样本2分别建立回归模型,并求出各自的残差平方和RSSl和RSS2。如果误差项的离散程度相同(即为同方差的),则RSSl和RSS2的值应该大致相同;若两者之间存在显著差异,则表明存在异方差. 检验过程中为了“夸大”残差的差异性,一般先在样本中部去掉C个数据(通常取cn4),再利用F统计量判断差异的显著性:第8页/共15页) 12/ )( , 12/ )() 12/ )/() 12/ )/(1212kcnkcnFRSSRSSk
8、cnRSSkcnRSSF其中,n为样本容量,k为自变量个数.然后对残差进行自相关性的检验,通常我们利用DW检验进行残差序列自相关性的检验。该检验的统计量为:nttnttteeeDW12221/)(其中 为残差序列,对于计算出的结果通过查表决定是否存在自相关性。te若 duDW4-du,则不存在自相关性;若 DW4-dl,则存在一阶负相关;若 dlDWdu 或4-duDW4-dl ,则无法判断第9页/共15页下面我们对模型进行检验:(1)残差的正态检验:由jbtest检验,h=0表明残差服从正态分布,进而由t检验可知h=0,p=1,故残差服从均值为零的正态分布;(2)残差的异方差检验:我们将28个数据从小到大排列,去掉中间的6个数据,得到F统计量的观测值为:f =1.9092,由F(7,7)=3.79,可知:f =1.90923.79,故不存在异方差.(3)残差的自相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 形成2024篮球裁判员的管理体系与试题与答案
- 智慧校园项目可行性研究报告(参考模板)
- 2024年植保员考试备考的环保知识讲解试题及答案
- 生活污水管网工程项目可行性研究报告(模板范文)
- 游泳救生员职业道德与责任感试题及答案
- 2024年规则探讨裁判员试题及答案
- 2024年农作物种子繁育员考试各类题型解析及试题答案
- 2024年农业植保员考题解析必看试题及答案
- 2024年农业植保员考试与行业发展趋势试题及答案
- 增强模具设计师考试竞争力的技巧试题及答案
- 数学教育研究导引
- JB T 2361-2007恒压刷握行业标准
- sbs改性沥青加工工艺
- 生物的种群动态与物种演变
- GB 4351-2023手提式灭火器
- 供电局标准用电手续办理流程(课件)
- 《行政强制法》课件
- 《清水混凝土技术》课件
- 合同自动续签模板
- JCT170-2012 E玻璃纤维布标准
- 地表沉降监测典型报告
评论
0/150
提交评论