版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线性方程组在中学数学中的应用摘 要基于中学数学中的有些问题可以转化为线性方程组来解决,使得复杂的问题变得简单。线性方程组是由几个变量之间组成的相互关系,在中学数学中大多都是两个未知量或三个未知量组成的齐次线性方程组,而求解线性方程组大多进行变形,用消元法进行,一般解都具有唯一性,只有少数部分的解不唯一。本文对线性方程组在中学数学代数和几何中的应用进行了研究。关键词:线性方程组 中学数学 消元法 线性方程组的解ABSTRACTBased on some mathematic problems of middle school, those problems can be transformed
2、into linear system of equations to solve and made complex problems become more and more simple .The linear system of equations consists of several variables .In middle school mathematics .most of them are homogenous linear equations with two unknown quantities or three unknown quantities. While the
3、solution of linear system equations is mostly used to the method of elimination .Generally. It has the only solution, only a small number of solutions are not unique. In this paper, we study the application of linear equations in algebra and geometry.Key words: system of linear questions;middle scho
4、ol mathematics;The elimination solution of system of linear equations目 录1.引言12.线性方程组的概念23.线性方程组的应用23.1在数列中的应用23.2在不等式中的应用43.3三角恒等式方面的应用53.4在几何方面的应用63.5在比例方面的应用73.6方程有关方面的应用93.7实际问题103.8其他方面的应用114.结束语12参考文献121.引言线性方程组起源于古代中国,它有着深远的历史,关于对线性方程组的研究,中国比欧洲至少要早1500多年,这一点从中国古代著作九章算术中就可以看出。约公元263年古代数学家刘微在九章算
5、术一书中对线性方程组就已经有了介绍和研究,在此书中方程组的解的理论已经较为完善了。现在中学讲授的线性方程组的解法和九章算术介绍的方法大致相同,九章算术是用直除法来解线性方程组,是一个较为麻烦的算法,刘微在对线性方程组进行研究后,在方程章的注释中对直除法加以改进,由此创立了互乘相消法,指出“举率而言之”即方程组个数要与方程个数保持一致,任意两个方程组的个数不能相同或成比例,当方程组中的方程个数小于未知数个数时,方程组的解不唯一;如果是齐次方程组,则方程组的解可以成比例的扩大和缩小,这些理论现已经成为了定理;秦九韶在公元1247年把九章算术中直除法改进为互乘法。直到大约1678年在西方,德国数学家
6、莱布尼兹才首次开始对线性方程组进行研究;17世纪末莱布尼兹用现在我们称为结式的一个行列式来研究线性方程组的解法,大约在1729年,马克劳林解含有2-4个未知量的线性方程组,开始用行列式的方法。1950年克拉默解含有5个未知量5个方程的线性方程组,创立了克拉默法则;1764年法国数学家裴蜀证明了含有n个未知量n个方程组有解的条件是它的行列式为零。1867年道奇森在行列式初等理论发表了我们现在所学的理论“系数阵和增广阵的秩相等”。对于线性方程组的理论研究逐渐完善,并且很多地方得到应用。在实际生活中我们遇到的许多问题也能结合线性方程组来进行求解,中学生运用好线性方程组在解题上的技巧可以开拓解题思路。
7、故此,本文归纳了线性方程组的几点应用。2.线性方程组的概念线性方程组是各个方程关于未知量均为一次的方程组,含有n个未知量的一次方程组,称为n元线性方程组(方程组里所含的方程个数不论多少)。线性方程组的一般形式其中代表未知量,代表未知量的系数,代表常数项【1】。在中学数学中,关于线性方程组理论知识已经渗透到了大多数知识点中。解方程组的思路主要是消元和降次,绝大多数的方法是代入法、加减法、换元法、因式分解法或相乘相除法等;此外,解线性方程组还有矩阵方法。这些方法都应当在方程组同解理论的指导下才能应用。3.线性方程组的应用3.1数列方面的应用数列是把一列数按一定的顺序排列起来,其中,数列的项是这个数
8、列里的每一个数,数列里的每一项都与它的序号有关,数列的第1项也就是排在第一位的数,通常也称为首项,数列的第2项也就是排在第二位的数,数列的第项也就是排在第位的数。所以,可以把数列的一般形式写为简记为。一个数列有有限的项数称为有穷数列,有无限的项数称为无穷数列。如果一个数列的第项与序号之间的关系能用一个式子来表示的话,那么,这个式子就叫做这个数列的通项公式。反之,我们也能根据数列的通项公式算出数列的每一项【2】。例1 已知数列是一个等差数列,若满足85是它前5项的和,705是它前15项的和,求此等差数列的前项和公式。分析:将已知条件代入等差数列前项和的公式,得到关于与的两个关系式,它们都是关于和
9、的二元一次方程,以此列出线性方程组,根据线性方程组的解法,可以求得与,从而得到所求的前项和的公式【2】。解:根据题意知,代入等差数列的前n项公式,得到:,解之得故综上所述,对于数列的相关量,通过联立线性方程组可以由其中两个量得出其他的量。例2已知数列是一个等比数列,若满足,且,求的值。分析:由等比数列的求和公式为:得到,所以要求的值,只需求出等比数列的与。 解:由已知得:得到:再代入(1)式得:得:。综上所述,已知数列各量之间的关系可以运用线性方程组求出。例3(2015年江苏省公务员A类54)已知一个数列为等差数列,有,若则这个数列的前项的平均数为多少?分析:要求数列前n 项的平均数又已知,故
10、只需求出即可,而可由得到,因为前项和公式,。解:由题意可知;得:由得:综上所述,已知数列的任意两项以及前项,要求前项的平均数,只需要根据他们之间的相互关系建立线性方程组,根据前项和可求出平均数。3.2不等式方面的应用用“大于号()”、“小于号()”、“不等号()”、“大于等于()”或“小于等于()”连接起来并具有大小关系的式子叫做不等式。把含有两个及其两个以上的未知量,且未知量的次数都为1的不等式联立起来的不等式称为不等式组。例4已知,证明:不等式成立。分析:对于解决此题,可以直接把数值代入,利用均值不等式就可证明,这里主要介绍的是用线性方程组解决的方法。证:把变形为:得到:上述方程是关于的一
11、个齐次线性方程组,都不等于零,所以方程组有非零解,他们的系数行列式为零。有:,化简得:,故:综上所述,由他们之间的关系,联立线性方程组,再结合均值不等式就可证明出。例5已知要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:表2-2类型A规格B规格C规格第一张钢板211第二种钢板123现分别需要A,B,C三种规格的产品为15,18,27块,则要分别截这两种钢板多少张,可得所需A,B,C三种规格成品,使得所用钢板的张数最少?解:设需截第一种钢板张,第二种钢板张,共需截这两张钢板张,则 图3-1 目标函数为: 得到图3-1的平面区域(阴影部分)为可行域
12、。由图3-1可以看出,当直线经过可行域上的点M时,截距最小。 解方程组:,得为点M的坐标,因为不是整数,所以点不是最优解,经过可行域内的整数点,得到 B(3,9)和C(4,8),是最优解【2】。 综上所述,线性规划的问题要结合线性方程组进行求解。3.2三角恒等式方面的应用例6 已知,,求出。分析:要解决此题,首先要找与和的关系,题中解的是两角差的余弦,根据公式就可以求出答案。重点是求出和的正弦和余弦,已知,就可以联立线性方程组求出和的正弦和余弦,代入公式就可以求出。解:由已知两式分别平方再相加得:化简得到:。综上所述,三角恒等式方面的问题,可以利用和角、差的问题,转化为线性方程组求解。3.3几
13、何方面的应用几何,即研究空间结构及性质的一门学科。与分析、代数等具有重要的地位,并且关系较为密切,是数学中最基本的研究内容之一。在中学数学中,我们主要学习的是平面几何,立体几何。平面几何研究的是直线和二次曲线(即圆锥曲线,也就是椭圆、双曲线和抛物线),以及它们的几何结构和度量性质(包括长度、角度、面积)。平面几何采用的是公理化的方法。立体几何是三维空间解析几何的研究范围,研究的是二次曲面的几何分类问题,二次曲面如球面,椭球面、锥面、双曲面。例7 已知两点为,求满足条件的直线方程。分析:已知两点要求直线方程,中学大多用两点式方程公式求解,运用两点式公式首先需要记住公式,最后还要化简。我们可以尝试
14、用线性方程组的方法求解,两点式公式也是由线性方程组推导出来的。对于解决此题,我们首先设出直线方程的一般形式:,再列出线性方程组,根据线性方程组理论列出行列式化简就可得出。解:设此直线方程为:根据题意可得:这是一个关于的齐次线性方程组,根据直线方程的不同时为零,要使方程组有非零解,它的充分必要条件就是系数行列式为零。即:,展开化简得:所以满足条件的直线方程为:综上所述,直接利用线性方程组与系数行列式的关系,展开行列式,得到直线方程。例8已知空间两直线与相交,直线过点且与平面:平行,直线的方程为:,求过直线的方程。分析:对于此题,直线是可由和它的方向向量来确定,直线也可由和它的方向向量来确定,要求
15、直线的方程,首先要找到的相互关系,两直线与相交,可得。直线与平面平行,联立线性方程组求解即可得出直线的方程【3】。解:设直线的方向向量为。根据题意可得:,可知两直线与相交,即:,展开化简得:直线与平面平行,即: ,令Z为自由未知量,取Z=1。解得:所以直线的方程为:。综上所述,利用空间两直线的公式,列出行列式,结合线性方程组求出直线方程。3.5比例问题方面的应用比例是各个部分在总体中的数量占总体数量的比重,反映的是总体的构成或结构。比例表示的是两个比相等的式子。判断两个比能否构成比例,就要看它们的比值是否相等。例9已知实数,满足条件,则的值为多少?分析:根据题意可以把设为条件的比例值,把上述比
16、例关系分别进行转化,再用含的式子来表示,要求,事实上只需要求出的值即可。解:根据题意可得: , 通过化简整理得到:把的值代入,得到:即,解得(与题意不合),或。得到。例10设,求证:【3】。证明:根据题意可知:。即:因为,所以上述方程是关于的齐次线性方程组,它有非零解,系数行列式为零。即:行列式展开整理得:。例11 若满足,且,求k的值【4】。解:由已知得:即: ,上述方程是关于的一个齐次线性方程组,由于 都在分母上,所以它们不同时为零,所以方程组有非零解,系数行列式为零。即:展开整理得:,即得或。例12设为正实数,求的最小值【5】。解: 令,则:,所以:从而得:当且仅当:,即:时取等号。即取
17、最小值,最小值为。综合上述的例子,可将比例问题转化为线性方程组问题,用线性方程组进行求解,便得出所求结果。3.6方程有关方面的应用在中学数学中,方程是含有未知数的等式。方程的定义不止一个,还有函数定义法,关系定义等,含未知数的等式也不一定就是方程,像0x=0这样的等式就不是方程,方程表示的是两个数学式(比如两个数、量、运算、函数)之间有相等关系的等式,在这两者之间用等号连接,使等式成立的未知数的值叫做方程的“解”或“根”。例13甲从距A 地5m处出发,以50m/h的速度前进,同时,乙从距A地15m处与甲同向出发,以30m/h的速度前进,甲乙能否相遇?相遇时他们出发了多少小时?解:设甲,乙在距A
18、点处相遇,相遇时间为,对于甲关于的关系为:,对于乙关于的关系为:联立可得 ,解得: 甲,乙能相遇,相遇时出发了0.5h。综上所述,将实际问题转化为数学问题,再转化为方程问题,建立线性方程组,用线性方程组求解。例14把一堆书分给几名同学,若每人分得3本,则还剩余4本;若每名同学分5本,那么前面的同学每人都分得5本,只有最后一名分到1本,求这堆书有几本?共有几名同学?分析:设学生有名,根据题中“每人分得3本,则还剩余4本”就可以用含的代数式表示出这堆书,再依据“前面的同学每人都分得5本,只有最后一名分到1本”列出不等式,进行求解,就可以求出有多少本书,多少名同学。解:设有x名同学,y本书。根据题意
19、可得:,解得: 综上所述,剩余定理结合线性方程组进行求解。3.7实际问题在生活中,有些问题线性方程组与实际问题的联系较为紧密,用线性方程组来解决比较简便。例15若购买45件甲商品和18件乙商品要用990元,购买86件甲商品和32件B乙商品要用1880元,甲商品和乙商品打了相同的折扣后,买250件甲商品和300件乙商品用了5200元,打折后比打折前少花多少钱?分析:根据题目给出的条件,找出合适的等量关系,列出方程组,再求解。得到甲商品和乙商品的原价,求出原价购买250件甲商品和300件乙商品与打折购买的差即解此题。解:设甲商品的原价为元,乙商品原价为元。根据题意得: ,解得: ,打折后与打折前的
20、差为:故打折后比打折前少花元钱综上所述,商品打折问题是生活中常遇到的问题,将其转化为线性方程组问题,会使问题简单易求解。例16(2015年山东省公务员54)某剧场A、B两间影视厅分别坐有观众43人和37人。如果将B厅的人往A厅调动,当A厅满座后,B厅内剩下的人数占B厅容量的。如果将A 厅内剩下的人往B厅调动,当B厅满座后,A厅内剩下的人数占A厅容量的。问B厅能容纳多少人?分析:无论A厅和B厅的观众如何移动,观众的总人数都是固定不变的。解:设A厅能容纳人,B=厅能容纳人。根据题意得:解得y=64故B厅能容纳64人。综上所述,实际生活中的问题也可以联立线性方程组进行求解。3.8其他方面的应用线性方
21、程组不仅在数列、不等式、方程、比例、几何、实际问题这六方面有应用,在其他方面也有广泛的应用。例17已知都是正整数,满足条件,求出的值。分析:看到此类的题目常规方法是根据条件联立方程解出的值,再代入就可以得出。这种解法相对来说比较麻烦,若把分别看为一个整体为,构造线性方程组进行求解,要简便一些。解:把分别设为。则:可转化为,可转化为,得到: 解得:根据平方差公式可得:。例18已知函数,试确定的关系式。分析:要确定的关系式,根据已知条件可从定义域入手,为了计算的方便,在取值过程中一般选择计算简便的值。解:根据题意可得:, 把方程组变形为:, 此时,方程组可以看成是一个关于的一个齐次线性方程组,而齐次线性方程组有非零解的充分必要条件是:系数行列式为零。即:展开化简得: 把式的值代入式得:即:故的关系式为:。综合上述例子,处理多个变量函数的最值问题、求解函数表达式的问题,对于中学生是一个困难的问题,利用线性方程组,用特殊的技巧进行处理。4.结束语在中学数学学习中,结合数学对应的理论知识,将许多的问题转化为线性方程组的问题,利用线性方程组有唯一非零解与数列行列式为零的关系,可将困难的问题变得简易,这是一种学习方式的转变。加强对学习的探索性,在探索学习的过程中获得解决问题的能力,既培养了学习能力,也在其中体会到了数学思想方法。通过经历建立线性方程组的模型并应用它解决
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论