版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12dxxfba)(. 1A-A0)(xf0)(xfA表示以y=f(X)为曲边的曲边梯形面积ababy=f(x)0y=f(x)0 xxyy00AA3321)(AAAdxxfba则2.如果f(x)在a,b上时正,时负,如下图3.结论:的代数和表示积的值都可用区边梯形面dxxfba)(几何意义abxyy=f(x)2A1A3A044.应用例1.用定积分表示图中四个阴影部分面积积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(0)(12xfaxxf解:dxxAa200000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)
2、2-15积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(21)(22xfxxf解:dxxA2210000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-16积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(1)(3xfbaxf解:dxAba0000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-17可得阴影部分的面积为根据定积分的几何意义,上,在上,上连续,且在,在)在图中,被积函数(0)(20, 0)(01211) 1(
3、)(42xfxfxxf解:dxxdxxA 1) 1( 1) 1(2202010000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-18成立。说明等式利用定积分的几何意义0sin22xdx例2:解:所以并有上,在上,上连续,且在,在在右图中,被积函数, 0sin20, 0sin0222sin)(21AAxxxxf0)(1222AAdxxf222A1Axyf(x)=sinx1-19 1.利用定积分的几何意义,判断下列定积分 值的正、负号。20sinxdx212dxx2利用定积分的几何意义,说明下列各式。 成立:0sin20 xdx200sin2sinxdxxdx1)2).1)2).练习:(A)(B)(B)3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB51T 1065-2021 川产道地药材生产技术规程 泽泻
- DB51T 995-2010 生物教学用化学试剂(制剂)
- 新建变压器夹框项目立项申请报告
- 2024年租客与房东安全协议
- 电真空器件测试仪器生产加工项目可行性研究报告
- 2024年企业自有停车场租赁及设备维护合同3篇
- 年产xx汽车刹车片项目可行性报告
- 幼儿面包烘焙课程设计
- 2024-2030年新版中国塑料件机型项目可行性研究报告
- 员工入职培训课程设计
- 沙锅餐饮行业管理公司采购管理手册
- 国家自然科学基金进展报告
- 李阳100句名言攻克语法
- 个体工商户设立(变更)登记审核表
- 一般自我效能感量表及计分方式
- (完整版)机加中心绩效考核方案
- 世界旅游夏威夷英文介绍简介English introduction of Hawaii(课堂PPT)
- 个人简历表格标准模板(Word)
- 安全生产中长期规划
- 日标欧标英标O型圈汇总
- 777F02板型尺寸及ULD组装高教知识
评论
0/150
提交评论