下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、习题31 1 判断下列方程在什么区域上保证初值解存在且唯一.1); 2); 3).解 1)因为及在整个平面上连续,所以在整个平面上满足存在唯一性定理的条件,因此在整个平面上初值解存在且唯一.2)因为除轴外,在整个平面上连续,在在整个平面上有界,所以除轴外,在整个平面上初值解存在且唯一.3)设,则故在的任何有界闭区域上,及都连续,所以除轴外,在整个平面上初值解存在且唯一.2 求初值问题 r:.的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设,则,所以.显然,方程在r上满足解的存在唯一性定理,故过点的解的存在区间为:.设是方程的解,是第二次近似解,则,.在区间上,与的误差为
2、.取,故.3 讨论方程在怎样的区域中满足解的存在唯一性定理的条件.并求通过点的一切解.解 设,则.故在的任何有界闭区域上及都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,是过的一个解.又由解得.其中.所以通过点的一切解为及如图.4 试求初值问题,的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为,一次近似为 ,二次近似为 ,三次近似为 ,四次近似为 ,五次近似为 ,一般地,利用数学归纳法可得次近似为 ,所以取极限得原方程的解为.5 设连续函数对是递减的,则初值问题,的右侧解是唯一的.证 设,是初值问题的两个解,令,则有.下面要证明的是当时,有.用反证法.假设当时,不恒
3、等于0,即存在,使得,不妨设,由的连续性及,必有,使得,.又对于,有,则有,.由()以及对是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当时,有.从而证明方程的右侧解是唯一的.习题331 利用定理5证明:线性微分方程 () 的每一个解的(最大)存在区间为,这里假设在区间上是连续的.证 在任何条形区域(其中)中连续,取,则有.故由定理5知道,方程的每一个解在区间中存在,由于是任意选取的,不难看出可被延拓到整个区间上.2 讨论下列微分方程解的存在区间: 1); 2); 3).解 1)因在整个平面上连续可微,所以对任意初始点,方程满足初始条件的解存在唯一.这个方程
4、的通解为.显然,均是该方程在上的解.现以,为界将整个平面分为三个区域来讨论.)在区域内任一点,方程满足的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与,两直线相交,因而解的存在区间为.又在内,则方程满足的解递减,当时,以为渐近线,当时,以为渐近线.)在区域中,对任意常数,由通解可推知,解的最大存在区间是,又由于,则对任意,方程满足的解递增.当时,以为渐近线,且每个最大解都有竖渐近线,每一条与轴垂直的直线皆为某解的竖渐近线.)在区域中,类似,对任意常数,解的最大存在区间是,又由于,则对任意,方程满足的解递增.当时,以为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因在整
5、个平面上连续,且满足不等式,从而满足定理5的条件,故由定理5知,该方程的每一个解都以为最大存在区间.3)变量分离求得通解,故解的存在区间为.3设初值问题: ,的解的最大存在区间为,其中是平面上的任一点,则和中至少有一个成立.证明 因在整个平面上连续可微,所以对任意初始点,方程满足初始条件的解存在唯一.很显然,均是该方程在上的解.现以,为界将整个平面分为三个区域来进行讨论.)在区域内任一点,方程满足的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与,两直线相交,因而解的存在区间为.这里有,.)在区域中,由于,积分曲线单调上升.现设位于直线的下方,即,则利用的右行解的延伸定理,得出的解可以延
6、伸到的边界.另一方面,直线的下方,积分曲线是单调上升的,并且它在向右延伸时不可能从直线穿越到上方.因此它必可向右延伸到区间.故至少成立.类似可证,对,至少有成立.4 设二元函数在全平面连续.求证:对任何,只要适当小,方程 的满足初值条件的解必可延拓到.证明 因为在全平面上连续,令,则在全平面上连续,且满足.对任何,选取,使之满足.设方程经过点的解为,在平面内延伸为方程的最大存在解时,它的最大存在区间为,由延伸定理可推知,或或为有限数且.下证后一种情形不可能出现.事实上,若不然,则必存在,使.不妨设.于是必存在,使,().此时必有,但,从而矛盾. 因此,即方程的解()必可延拓到.acknowle
7、dgements my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her consistent and illuminating instruction, this thesis could not havereached its pres
8、ent form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd, professor ssss, who have instructed and helped me a lot in the past two
9、 years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitude to my friends and my fellow classmates who gave me their help and time in listening to me and helping me work out my problems durin
10、g the difficult course of the thesis. my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her consistent and illuminating instruction, this thesis c
11、ould not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd, professor ssss, who have instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 痛经课件流程教学课件
- 手机原理课件教学课件
- 护士课件英语教学课件
- 公司机密保密协议
- 2024年市场营销与协作合同
- 2024年城市供水管道铺设工程承包合同
- 2024可再生能源发电并网服务合同
- 2024年婚姻外遇协议书
- 2024年《夏令营老师与营员心理辅导协议》心理辅导内容与保密原则
- 2024年企业间产品生产与销售合同
- 2024美团外卖服务合同范本
- 2024-2030年飞机内部紧固件行业市场现状供需分析及投资评估规划分析研究报告
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 企业信用修复服务协议
- 部编人教版三年级语文上册期中测试卷5份(含答案)
- 期中测评试卷(1-4单元)(试题)-2024-2025学年人教版三年级数学上册
- 2023年全国中学生英语能力竞赛初三年级组试题及答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 部编版道德与法治九年级上册 8.2 共圆中国梦 教学设计
- 英语四级单词表4500.xls
- 汽车材料概述课件(ppt 119页).ppt
评论
0/150
提交评论