版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 时间序列分析是一种广泛使用的数据分析方法,它主要用来描述与 探索自然和社会经济现象随时间发展变化的数量规律性。通过本章的 学习,我们希望读者能够了解不同的时间序列预测模型,比如移动平 均法、指数平滑法、线性趋势、二次趋势、指数趋势、自回归和用于 季节性数据的最小二乘模型,掌握统计实践中模型选择的方法,并同 时了解指数的一些基础知识。 本章内容:本章内容: 14.1 时间序列模型的组成因素 14.2 年度时间序列数据的平滑 14.3 基于最小二乘法的趋势拟合和预测 14.4 自回归模型用于拟合和预测趋势 14.5 时间序列预测季节数据 14.6 指数 第第14章章 时间序列预测和指数时间序列
2、预测和指数 2 14.1 时间序列模型的组成因素时间序列模型的组成因素 时间序列预测有一个基本假设,那就是影响 过去和现在活动的因素将继续以几乎相同的方式 影响将来。因此,时间序列预测的主要目的是识 别和区分这些影响因素,从而达到帮助我们进行 预测的目的。为了达到这些目标,可以用许多数 学模型来测量一个时间序列的基本组成因素。一 般说来,一个时间序列主要包括如下因素: p趋势成分 p波动成分 循环因素 随机因素 季节因素 3 1.年度时间序列模型年度时间序列模型 iiii ICTY i T i C i I 其中: i年的趋势分量值; i年的周期分量值; i年的不规则分量值。 4 2.月度或季度
3、时间序列模型月度或季度时间序列模型 iiiii ICSTY i S =i时期的季节分量值。 i T i C i I 其中: i时期的趋势分量值; i时期的周期分量值; i时期的不规则分量值。 5 14.2 年度时间序列数据的平滑年度时间序列数据的平滑 在考查年度数据时,由于受到年与年之间波动 的影响,我们对该序列长期趋势没有很明显的直 观印象,从而不能确定序列中是否存在长期上升 或下降的趋势。想要对数据一段时期内的整体变 化有更好的了解,可以运用移动平均法或指数平 滑法。 1.移动平均法 移动平均法是对于选定的一个长度为L的时期, 通过计算L个观测值的均值来预测未来的值,移动 平均值以MA(L
4、)表示。 结果取决于L的选取。 例如,5年移动平均,选取L=5; 7年移动平均, 选取L=7 6 举例:5年移动平均 第1个移动平均: 第2个移动平均: 5 YYYYY MA(5) 54321 5 YYYYY MA(5) 65432 7 案例:年度销售数据案例:年度销售数据 年年销售额销售额 1 2 3 4 5 6 7 8 9 10 11 etc 23 40 25 27 32 48 33 37 37 50 40 etc 8 案例:年度销售数据案例:年度销售数据 年年销售额销售额 123 240 325 427 532 648 733 837 937 1050 1140 平均年平均年 5年移动年
5、移动 平均平均 329.4 434.4 533.0 635.4 737.4 841.0 939.4 5 54321 3 5 3227254023 29.4 etc 9 年度数据与移动平均年度数据与移动平均 5年移动平均平 滑了数据并且 显示出某种潜 在的变化趋势 10 2.2.指数平滑指数平滑 指数平滑法也是一种时间序列平滑的方法。 除了平滑作用,当不确定长期趋势是否存在或长 期趋势的类型时,还可以运用指数平滑法进行短 期(即将来的某个时期)预测。 之所以称之为指数平滑,是因为这个方法包 含一系列指数权重的移动平均。最近的一个值权 重值最高,之前的值权重值较之略小,依次递减, 第一个值的权重最
6、小。整个序列中,每个指数平 滑值都是在所有过去值的基础上得出的,这是指 数平滑不同于移动平均的另一个优势。尽管指数 平滑计算看上去似乎很麻烦,但是可以运用 Microsoft Excel进行计算。 11 指数平滑模型指数平滑模型 11 YE 1iii E)W1(WYE 其中: Ei = 时期 i的指数平滑值 Ei-1 = 时期 i 1的指数平滑值 Yi = 时期 i的观测值 W = 权重(平滑系数) 0 W 1 i = 2, 3, 4, 12 指数平滑举例指数平滑举例 假设权重 W = 0.2 时期时期 (i) 销售额销售额 (Yi) 前一时期的预前一时期的预 测值测值 (Ei-1) 本时期的
7、指数平滑值本时期的指数平滑值 (Ei) 1 2 3 4 5 6 7 8 9 10 23 40 25 27 32 48 33 37 37 50 - 23 26.4 26.12 26.296 27.437 31.549 31.840 32.872 33.697 23 (.2)(40)+(.8)(23)=26.4 (.2)(25)+(.8)(26.4)=26.12 (.2)(27)+(.8)(26.12)=26.296 (.2)(32)+(.8)(26.296)=27.437 (.2)(48)+(.8)(27.437)=31.549 (.2)(48)+(.8)(31.549)=31.840 (.2)
8、(33)+(.8)(31.840)=32.872 (.2)(37)+(.8)(32.872)=33.697 (.2)(50)+(.8)(33.697)=36.958 1ii i W)E(1WY E E1 = Y1 13 预测时期预测时期 i i + 1 + 1 当前时期 (i)的平滑值为下一时期(i+1)的 预测值: i1i EY 14 14.3 基于最小二乘法的趋势拟合和预测基于最小二乘法的趋势拟合和预测 运用回归分析预测趋势线: 年时期X 销售额Y 1999 2000 2001 2002 2003 2004 0 1 2 3 4 5 20 40 30 50 70 65 01 Ybb X 以时
9、间 X 作为自变量: 15 基于最小二乘法的趋势拟合和预测基于最小二乘法的趋势拟合和预测 线性趋势方程为: 21.9059.5714 ii YX 年时期X 销售额Y 1999 2000 2001 2002 2003 2004 0 1 2 3 4 5 20 40 30 50 70 65 16 基于最小二乘法的趋势拟合和预测基于最小二乘法的趋势拟合和预测 当时间序列体现出非线性趋势时,可以采用非线性 回归模型 二次趋势预测方程: 检验二次项的显著性: 也可以尝试其它非线性函数类型以获取最佳拟合方 程。 2 210 ii XbXbbY 17 基于最小二乘法的趋势拟合和预测基于最小二乘法的趋势拟合和预
10、测 指数趋势预测方程: 01 log( ) ii Ybb X 其中 b0 = log(0)的估计 b1 = log(1)的估计 说明: %100) 1 ( 1 为年度复增长率的估计值(用%表示) 18 14.4 自回归模型用于拟合和趋势预测自回归模型用于拟合和趋势预测 时间序列中的观测值往往与之前或之后的观测值高度相 关,这种相关称为自相关。自回归模型是用来预测含有自相 关的时间序列的一种方法。一阶自相关指一个时间序列中连 续值之间的相关关系。二阶自相关指两个时期的值之间的相 关关系。p阶自相关指一个时间序列中p个时期的值之间的相 关关系。 p 阶自回归模型: ip- ip2- i21- i1
11、0i YAYAYAAY 随机误差 19 14.5 时间序列预测季节数据时间序列预测季节数据 回顾包含季节变动的经典时间序列模型 : 假设季节为季度: 定义3个虚拟变量: 若为第1季度,则Q1 = 1,否则为0 若为第2季度,则Q2 = 1,否则为0 若为第3季度, 则Q3 = 1,否则为0 (若Q1 = Q2 = Q3 = 0,那么第4季度为1) iiiii YTSCI 20 时间序列预测季节数据时间序列预测季节数据 变换为线性形式: 312 01234 i XQQQ ii Y 0112 2334 log( )log()log()log() log()log()log( ) ii i YXQ
12、QQ (1-1)*100% = 季度复增长率的估计值 ( %) 2= 第1季度对第4季度的乘子估计值 3=第2季度对第4季度的乘子估计值 4=第3季度对第4季度的乘子估计值 21 季节模型估计季节模型估计 指数预测方程: 01213243 log( ) ii Ybb Xb Qb Qb Q 其中 b0 = log(0) 的估计值 b1 = log(1)的估计值 etc 说明: %100)1 ( 1 = 季度复增长率估计值 ( %) =第1季度对第4季度的乘子估计值 =第2季度对第4季度的乘子估计值 =第3季度对第4季度的乘子估计值 2 3 4 22 季度模型举例:季度模型举例: 假设预测方程为:
13、 123 log( )3.43.017.082.073.022 ii YXQQQ b0 = 3.43, so b1 = .017, so b2 = -.082, so b3 = -.073, so b4 = .022, so 53.2691 10 0 b0 040.1 10 1 b1 828. 0 10 2 b2 845.0 10 3 b3 052.1 10 4 b4 23 季度模型举例:季度模型举例: 解释: 53.2691 0 040.1 1 827.0 2 845.0 3 052.1 4 第1年第1季度未校正的趋势值 4.0% = 季度复增长率估计值 以4%的季度增长率校正后,第1季度的
14、平均销售额是 第4季度平均销售额的 82.7% 以4%的季度增长率校正后,第2季度的平均销售额是 第4季度平均销售额的 84.5% 以4%的季度增长率校正后,第3季度的平均销售额是 第4季度平均销售额的 105.2% 值: 24 14.6 指数指数 简单地说,指数是一个时间序列中某个特定时点的观 测值与另一个时点观测值的百分比。 通常,在商业和经济活动中,指数被用作商业或经济 活动变化的指示值。指数有很多种,比如价格指数、数量 指数、价格指数和社会指数。这里,我们只对价格指数进 行简单介绍。 价格指数常常用来比较一种商品在给定时期的价格与 在过去某一特定时间点的价格。简单价格指数主要用于单 一
15、商品。总价格指数用于跟踪一组商品(称之为市场篮)在 给定时期的价格与过去某一特定时间点价格的变化。统计 上,我们把作为比较基础的过去某一特定时间点称为基期。 如果可能的话,在为某一指数选择基期时,我们最好选择 经济状况较为稳定的时期,而不要选择增长经济的顶峰或 衰退经济的低谷。此外,基期应该选择相对较近的时期, 这样在比较时就不会因为时间跨度太大而受到技术变化、 消费者态度和习惯等因素的影响。 25 简单价格指数简单价格指数 100 i i base P I P 其中 Ii = i年的价格指数 Pi = i年的价格 Pbase = 基年的价格 26 指数举例:指数举例: 1998 年 2006
16、年的机票价格: 2 .92)100( 295 272 100 2000 1998 1998 P P I 年年价格价格 指数指数 (基年基年 = 2000) 199827292.2 199928897.6 2000295100 2001311105.4 2002322109.2 2003320108.5 2004348118.0 2005366124.1 2006384130.2 100)100( 295 295 100 2000 2000 2000 P P I 2 .130)100( 295 384 100 2000 2006 2006 P P I 27 指数:解释指数:解释 1998年的价格是基年价格的 92.2% 2000年的价格是基年价格的 100% (根据定义,2000年时 基年) 2006年的价格是基年价格的 130.2% 2 .92)100( 295 272 100 2000 1998 1998 P P I 100)100( 295 295 100 2000 2000 2000 P P I 2 .130)100( 295 384 100 2000 2006 2006 P P I 28 综合价格指数综合价格指数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精准识别课件教学课件
- 智慧养老中心解决方案
- 颈椎病解刨结构
- 2024年超高速加工中心投资项目资金申请报告书
- 车场停电应急预案
- 第六章 机械能守恒定律-功能关系与能量守恒 2025年高考物理基础专项复习
- 2-1-4 微专题1-碳酸钠与碳酸氢钠的相关计算 高一上学期化学人教版(2019)必修第一册
- 骨水泥在糖尿病足的应用
- 医疗器械合作协议书范本
- 社交网络钩机租赁合同
- 肛门疾病知识讲座
- 代谢性疾病知识讲座
- 山东重点行业环境准入指南汇总
- 新概念第二册语法知识点汇总(完美版)
- 《城市污水源热泵》课件
- 医务人员心理科普知识讲座
- 2024年中冶城市投资控股有限公司招聘笔试参考题库含答案解析
- 集体主义班会课课件
- 第5.3课 联系实际生活弘扬工匠精神-【中职专用】高二语文高效课堂(高教版2023·职业模块)
- 静脉用药安全输注药护专家指引
- 企业安全管理加强供应链安全与管理
评论
0/150
提交评论