版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 1Some Recent Development of Intelligent PR and ApplicationsGuanghui He 2 2What are Biometrics?Biometrics are automated methods of recognizing a person based on the acquired physiological or behavioral characteristics Finger Scan52.1%Keystroke Scan0.3%Facial Scan11.4%Hand Scan10.0% Others12.4%Iris
2、Scan7.3%Voice Scan4.1%Signature Scan2.4%Percentage of usage (Source: International biometric group)33A ScenarioTwo Al Qaeda(“基地”组织) suspects were recently taken into custody by U.S. immigration authorities as they tried to enter the United States after their fingerprints were matched with ones lifte
3、d by U.S. military officials from documents found in caves in Afghanistan(阿富汗). Why Biometric Technologies?For Security Reasons4 4Example 1: SFinGe - Synthetic Fingerprint Generator developed at the Biometric Systems Lab,University of Bologna ITALY, is utilized to: compare different fingerprint matc
4、hing algorithms train pattern recognition techniques that require large learning-sets (e.g. neural network) easily generate a large number of “virtual users” to develop and test medium/large-scale fingerprint-based systems 5 53-D model (pressure in on-line model) Modeling by deformation Modeling seg
5、ments (conics, splines) Example 2: generation of synthetic signature Assembling (desegmentation) of 2-D model6 6 Example 3: Privacy protection: - After enrollment, a true object (e.g. image of face, fingerprint or voice signal) is intentionally distorted using irreversible transform - Cancelable bio
6、metrics (Ratha, Connell, Bolle, 2001) Skin distortion (fingerprint) (source: Biometric Systems Lab, University of Bologna)Face image is warped with bilinear interpolation (source: Serif Inc.) Some More Examples: Generation of synthesis fingerprints Generation of synthetic signatures (handwriting mod
7、eling is a relevant problem) Iris recognition and synthesis Information fusion in biometrics Speech-to-animated-face78Where do we need biometrics? Traditional application: human identification Recent advances: Early warning paradigm Designing simulators for HQP training systems Sensing in robotics9E
8、arly detection and warningSemantic domainIndividualBiometric sensorSignal processingDecision makingRaw biometric dataBasic configurationFeature spaceApplication: physical access control systemSensorsExtractorsImage- andsignal processingalgorithmClassifiersBiometricsVoice, signature, face, fingerprin
9、t, iris, hand geometry, etcData Rep.Audio signal, image, infrared imageFeatureVectorsScoresDecision:Match, Non-match,InconclusiveBiometric databasesLevel 1: document-checkDatabases (Watch-list)Level 2: biometrics1011Laboratory experiments12Early warning system components:- Supports facial analysis -
10、 Skin temperature evaluation- Detection of disguise: wig and other artificial materials, and surgical alternations- Evaluation of blood vessel flow (modeling expressions)- Other physiological / medical measurements (alcohol / drug abuse)Infrared biometrics and decision supportMid-infrared: 3-5 m, fa
11、r-infrared: 8-12mTemperature value 32.8754 0C is detected in a point 13Early warning system components:Blood flow rate analysis (from infrared)Visualization of the blood flow rate from the upper rectangle of (a)Thermal image of subject at the beginning of answering the question “Do you have that sto
12、len $20 on you right now?”Thermal image of subject at the end of answering the questionVisualization of the blood flow rate from (b). The difference is significant (from I. Pavlidis report)14Early warning system: decision-makingAlternative mAlternative 2insufficiency of informationINDIVIDUALbiometri
13、csDegrees of beliefBiometric sensorTEMPORAL faults of biometric sensorserrors of biometric sensorsMass assignmentsAlternative 1Belief functionUpdatingDecision making in semantic form15Early warning security access control system:Semantic processorGait-biometric processorGait features processorThe gr
14、ound reaction forceGenderPregnancyFatigueInjuriesAfflictionsDrunkennessGround reaction force processorDiscriminative gait biometric in semantic formGait biometrics analysis and decision-making assistance16Face capturingFitting points0001001001010011010010010010010110010010001000010010110100100101001
15、001001000 File (mesh/colour)3D Face modelEarly warning system components:17Face capturingFitting points0001001001010011010010010010010110010010001000010010110100100101001001001000 File (mesh/colour)3D Face modelEarly warning system components:18Other applications:Biometric data modeling for HQP trai
16、ningProcessing of screened dataProcessing of pre-screeneddataDialogsupportDecision-making supportVisible band camera IR band camera Synthetic image of an individualVoice analyzer Officer-in-training 19Perspectives: humanoid robotsSensing in roboticsRobot head developed by Dr. Marek Perkowskiat Portl
17、and State University Emotion synthesis Robot speech2020Its Similarity and Pattern Matching!What is Measurement ?Just a Comics Joke? No! More Than That2121Pattern RecognitionnCognition (Learning)nRe-CognitionnClassificationnIdentificationnVerificationnClustering22223D Object Recognition2323Table of C
18、ontentsnBACKGROUNDnTHEORYnEXPERIMENTS and ILLUSTRATIONSnFUTURE RESEARCH2424Linear CombinationnObject 1 A1nObject 2 A2nObject 3 A3nObject 4 A4nObject A4= a A1+ bA2 +cA3 +d25253D Recognition BackgroundWidely usednindustrial parts inspectionn military target identificationnCAM/CAD engineering designn i
19、mage/vision understanding, interpretation, visualization, and recognition26263D Recognition BackgroundRecognition 3D objectsnRigid Objects Fixed shapesnDeformable Objects Variable shapesnArticulated Objects Fewer methods proposed1. Brooks ACRONYM system using symbolic reasoning. 2.Grimson et al exte
20、nded the interpretation of tree approach to deal with 2-D objects with articulated components 27273D Recognition BackgroundnExtended Linear Combination Method (LC)nSimpler preprocessing nSimpler and faster computation nApplicable to many articulated object recognition, understanding, interpretation,
21、 and visualization2828THEORYnExtended Linear Combination Method (LC)nbased on the observation that novel views of objects can be expressed as linear combination of the stored views (from learning)n It identifies objects by constructing custom-tailored templates from stored two-dimensional image mode
22、ls. 2929Linear CombinationModelnan image consists of a list of feature points observed in the image 3030Linear CombinationRecognition: An unknown object is matched with a model by comparing the points in an image of the unknown object with a template-like collection of points produced from the model
23、31313232333334343535Experitment-1Match same objects3636Experiment-1 Result3737Experiment-23838Experiment-3 3939Experiment-3 Result4040Experiment-44141Experiment-4 ResultRejectedRejected Too42424343444445454646Color Biometric Imaging Analysis4747Items to be discussed:nClustering and K-means algorithm
24、nStatisticalnUnsupervisednColor Representation and Color Image Segmentation4848Supervised Classification and minimum distance classification nMinimum Distance ClassificationnSupervisednFind the center of known patterns of each class nClassify unknown patterns into the class that is “closest” to it.C
25、i xiixN14949Color Image Segmentation: Hue Component C1 Green Yellow 1 Red (H1) C2 Blue Magenta (H2) 5050Color Image SegmentationnTask:nStudy the K-means algorithm in hue space.nInteresting: nPeriodical Circular Property of hue componentnnew Measure of Distance.nProblem:nK-means algorithm is based on
26、 the measure of distance and definition of center5151Hue Component ClusteringnDefinition 1: Distance of Hue ValuesnDefinition 2: Directed Distance of Hue ValuesnTricky: Addition of Directed DistancenDefinition 3: Interval and Its Midpoint in H Space.nDefinition 4: Center of a Set of Points in Hue Sp
27、acenTheory: Euclidean Theory of Center in Hue Space5252Hue Component ClusteringnDefinition 1: Distance of Hue Values2121212121 2),(HHHHHHHHHHd5353Hue Component ClusteringnDefinition 2: Directed Distance of Hue ValuesnTricky: Addition of Directed Distancenthe following vector addition property no lon
28、ger holds: 211212121221121221,)(22),(HHHHHHHHHHHHHHHHHHd),(),(),(322131HHdHHdHHd5454Hue Component ClusteringnRevisit definition: Interval and Its Midpoint in H Space.nRevisit definition : Center of a Set of Points in Hue SpacenRevisit the Proof of Theory: Euclidean Theory of Center in Hue Space5555C
29、olor Image SegmentationnI and H components are of Interest. nGood color image segmentation algorithms should consider and combine bothnVariation of light intensity and occlusion: hue component is betternColor information is lost:Intensity component is better nFuzzy member function is introduced5656Color Image Segmentation - Experiment 1Intensity Distinguishable(a) Origi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高考语文复习知识清单第2章文学类文本阅读(一)小说专题07写小说文学短评(学生版+解析)
- 各种培训课件教学课件
- 二年级数学计算题专项练习1000题汇编集锦
- 肉鸭采购合同(2篇)
- 望庐山课件教学课件
- 南京工业大学浦江学院《实验艺术》2021-2022学年第一学期期末试卷
- 钢结构施工组织设计【超完美版】
- 多细胞生物体说课稿
- 《长方形的面积》说课稿
- 《小数的加减法》说课稿
- 情侣分手经济纠纷起诉书模板
- 单人心肺复苏操作评分标准
- 前庭康复-医学课件
- 智能林业装备与技术
- 安徽省芜湖市2023-2024学年七年级上学期期中数学试卷
- 地下害虫-蟋蟀类
- 企业周边环境风险分析
- 怎样写科研项目申请书(PPT)
- 矿产资源-三率-指标要求+第13部分:粘土矿产
- 语文大单元教学设计+作业设计:六上八单元跨学科主题活动
- 第一讲 中国传统艺术之书法
评论
0/150
提交评论