版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级八年级 下册下册17.1勾股定理(勾股定理(3) 本课首先运用勾股定理证明了直角三角形全等的本课首先运用勾股定理证明了直角三角形全等的HL 判定定理,从中进一步确认,一个直角三角形中,判定定理,从中进一步确认,一个直角三角形中, 只要两边的大小确定,则这个三角形就形状大小就只要两边的大小确定,则这个三角形就形状大小就 确定了然后,运用勾股定理,通过作直角三角形,确定了然后,运用勾股定理,通过作直角三角形, 画出了长度为无理数的线段,并学习在数轴上画出画出了长度为无理数的线段,并学习在数轴上画出 无理数表示的点的方法无理数表示的点的方法本课说本课说明明 学习目标:学习目标:1能用勾股定理证
2、明直角三角形全等的能用勾股定理证明直角三角形全等的“斜边、斜边、 直角边直角边”判定定理();判定定理();2能应用勾股定理在数轴上画出表示无理数的点;能应用勾股定理在数轴上画出表示无理数的点;3体会勾股定理在数学中的地位和作用体会勾股定理在数学中的地位和作用 学习重点:学习重点: 用勾股定理作出长度为无理数的线段用勾股定理作出长度为无理数的线段问题问题1在八年级上册中,我们曾经通过画图得到结在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等论:斜边和一条直角边分别相等的两个直角三角形全等学习了勾股定理后,你能证明这一结论吗?学习了勾股定理后,你能证明这一结
3、论吗?证明证明“HL” ” 证明证明“HL” ” 22=-=-BCABAC ,22- -= =B CA BA C 已知:如图,在已知:如图,在RtABC 和和RtA B C 中,中,C= =C = =90,AB= =A B ,AC= =A C 求证:求证:ABCA B C 证明:证明:在在RtABC 和和RtA B C 中,中,C= =C= =90,根据勾股定理,得,根据勾股定理,得A B C ABC 证明证明“HL” ” A B C ABC ABCA B C (SSS)在在 ABC和和A B C 中 AB= =A B , AC= =A C , BC= =B C 已知:如图,在已知:如图,在R
4、tABC 和和RtA B C 中,中,C= =C = =90,AB= =A B ,AC= =A C 求证:求证:ABCA B C 画图提高画图提高 问题问题2我们知道数轴上的点有的表示有理数,有我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的表示无理数,你能在数轴上画出表示 的点吗?的点吗?27643 -1 0 1 2 3 1122你能在数轴上表示出你能在数轴上表示出 的点吗?的点吗?252 2? 呢呢你能在数轴你能在数轴上画出表示上画出表示 的点吗?的点吗?13探究探究1:113213313?122 3 93 42 34567?用用相相同同的的方方法法作作, , ,
5、, , , . . . . .呢呢1、在数轴上找到点、在数轴上找到点A,使使OA=3;2、作直线、作直线lOA,在在l上取一点上取一点B,使,使AB=2;3,以原点以原点O为圆心,以为圆心,以OB为半径作弧,弧与为半径作弧,弧与数轴交于数轴交于C点,则点点,则点C即为表示即为表示 的点。的点。131517点点C即为表示即为表示 的点的点13你能在数轴上画出表示你能在数轴上画出表示 的点吗?的点吗?13检测检测3132213131 1、如图为如图为4 44 4的正方形网格的正方形网格, ,以格点与点以格点与点A A为为端点端点, ,你能你能画出几画出几条边长条边长为为 的线段的线段? ?A10检
6、测检测2.2.如图,如图,D(2,1),D(2,1),以以ODOD为一边画等腰三角形,并且为一边画等腰三角形,并且使另一个顶点在使另一个顶点在x x轴上,这样的等腰三角形能画多轴上,这样的等腰三角形能画多少个少个? ?写出落在写出落在x x轴上的顶点坐标轴上的顶点坐标. .x xy y(2,1)1255(5, 0) ( 5, 0)5(4,0)xx2x 2221(2)xx22144xxx54x 解解得得5( , 0)4检测检测画图提高画图提高 练习练习1教科书第教科书第27页练习页练习15,4,3,2,12345圆柱圆柱(锥锥)中的最值问题中的最值问题例例1、 有一圆柱,底面圆的半径为有一圆柱,
7、底面圆的半径为3cm,高为,高为12cm,一只蚂蚁从底面的一只蚂蚁从底面的A处爬行到对角处爬行到对角B处处吃食物,它爬行的最短路线长为多少?吃食物,它爬行的最短路线长为多少?ABBAC一只蚂蚁从距底面一只蚂蚁从距底面1cm的的A处爬行到对角处爬行到对角B处处吃食物,它爬行的最短路线长为多少?吃食物,它爬行的最短路线长为多少?ABBAC例例4、如图,一只蚂蚁从实心长方体的顶点、如图,一只蚂蚁从实心长方体的顶点A出发,出发,沿长方体的表面爬到对角顶点沿长方体的表面爬到对角顶点C1处(三条棱长如图处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?所示),问怎样走路线最短?最短路线长为多少?
8、ABA1B1DCD1C1214长方体中的最值问题长方体中的最值问题如果长方形的长、宽、高分别是如果长方形的长、宽、高分别是a、b、c(abc),你能求出蚂蚁从顶点),你能求出蚂蚁从顶点A到到C1的最短路径吗?的最短路径吗?从从A到到C1的最短路径是的最短路径是22) cb(a例例1、如图,长方体的长为、如图,长方体的长为15cm,宽为,宽为10cm,高为,高为20cm,点,点B到点到点C的距离为的距离为5cm,一只蚂蚁如果要沿,一只蚂蚁如果要沿着长方体的表面从着长方体的表面从A点爬到点爬到B点,需要爬行的最短距点,需要爬行的最短距离是多少?离是多少?201015BCA分析分析 根据题意分析蚂蚁
9、爬行的路线有根据题意分析蚂蚁爬行的路线有两种情况两种情况(如图如图 ),由勾股定理可求由勾股定理可求得图得图1中中AB最短最短.BA2010155AB =20202 2+15+152 2 =625 =625 BAB =10102 2+25+252 2 =725 =725 A2010155例例2、如图,是一个三级台阶,它的每一级的长、宽和、如图,是一个三级台阶,它的每一级的长、宽和高分别等于高分别等于5cm,3cm和和1cm,A和和B是这个台阶的两个是这个台阶的两个相对的端点,相对的端点,A点上有一只蚂蚁,想到点上有一只蚂蚁,想到B点去吃可口的点去吃可口的食物食物.请你想一想,这只蚂蚁从请你想一
10、想,这只蚂蚁从A点出发,沿着台阶面点出发,沿着台阶面爬到爬到B点,最短线路是多少?点,最短线路是多少?BAABC531512台阶中的最值问题台阶中的最值问题 AB2=AC2+BC2=169, AB=13.DABC蚂蚁从蚂蚁从A A点经点经B B、C C、到、到D D点的最少要爬了多少厘点的最少要爬了多少厘米?(小方格的边长为米?(小方格的边长为1 1厘米)厘米)GFE假期中,王强和同学到某海岛上去玩探宝假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走游戏,按照探宝图,他们登陆后先往东走8千米,又往北走千米,又往北走2千米,遇到障碍后又往千米,遇到障碍后又往西走西走3千米
11、,在折向北走到千米,在折向北走到6千米处往东一千米处往东一拐,仅走拐,仅走1千米就找到宝藏,问登陆点千米就找到宝藏,问登陆点A 到到宝藏埋藏点宝藏埋藏点B的距离是多少千米?的距离是多少千米?AB82361小溪边长着两棵树,恰好隔岸相望,一棵树高小溪边长着两棵树,恰好隔岸相望,一棵树高30尺,另外一棵树高尺,另外一棵树高20尺;两棵树干间的距离尺;两棵树干间的距离是是50尺,每棵树上都停着一只鸟,忽然两只鸟尺,每棵树上都停着一只鸟,忽然两只鸟同时看到两树间水面上游出一条鱼,它们立刻同时看到两树间水面上游出一条鱼,它们立刻以同样的速度飞去抓鱼,结果同时到达目标。以同样的速度飞去抓鱼,结果同时到达目
12、标。问这条鱼出现在两树之间的何处?问这条鱼出现在两树之间的何处?如图,等边三角形的边长是如图,等边三角形的边长是2。(1)求高)求高AD的长;的长;(2)求这个三角形的面积。)求这个三角形的面积。ABDC若等边三角形的边长是若等边三角形的边长是a呢?呢?如图,在如图,在ABC中,中,AB=15,BC=14,AC=13,求,求ABC的面积。的面积。ABC151413如图,在如图,在ABC中,中,ACB=900,AB=50cm,BC=30cm,CDAB于于D,求,求CD的长。的长。ABCD已知,一轮船以16海里/时的速度从港口A出发向西北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东北
13、方向航行,离开港口2小时后,则两船相距() A、25海里B、30海里 C、35海里D、40海里 一个圆柱状的杯子,由内部测得其底面直径为4cm,高为10cm,现有一支12cm的吸管任意斜放于杯中,则吸管 _露出杯口外. (填“能”或“不能”) 1、放学以后,小红和小颖从学校分手,分别沿、放学以后,小红和小颖从学校分手,分别沿着东方向和南方向回家,若小红和小颖行走的速着东方向和南方向回家,若小红和小颖行走的速度都是度都是40米米/分,小红用分,小红用15分钟到家,小颖用分钟到家,小颖用20分钟到家,小红和小颖家的距离为分钟到家,小红和小颖家的距离为 ( ) A、600米米 B、800米米 C、1
14、000米米 D、不能确定、不能确定2、直角三角形两直角边分别为、直角三角形两直角边分别为5厘米、厘米、12厘米,厘米,那么斜边上的高是那么斜边上的高是 ( )A、6厘米厘米 B、 8厘米厘米 C、 80/13厘米;厘米; D、 60/13厘米;厘米; CD例例2:如图,求矩形零件上两孔中心如图,求矩形零件上两孔中心A、B的距离的距离.21214060ABC?(一)、(一)、折叠四边形折叠四边形例例1:折叠矩形纸片,先折出折痕:折叠矩形纸片,先折出折痕对角线对角线BD,在绕点,在绕点D折叠,使点折叠,使点A落在落在BD的的E处,折痕处,折痕DG,若,若AB=2,BC=1,求,求AG的长。的长。D
15、AGBCE例例2:矩形:矩形ABCD如图折叠,使点如图折叠,使点D落在落在BC边上的点边上的点F处,已知处,已知AB=8,BC=10,求折痕,求折痕AE的长。的长。ABCDFE例例3:矩形:矩形ABCD中,中,AB=6,BC=8,先把它对折,折痕为先把它对折,折痕为EF,展开后再沿,展开后再沿BG折叠,使折叠,使A落在落在EF上上的的A1,求第二,求第二次折痕次折痕BG的长。的长。ABCDEFA1G正三角形正三角形AA1B例例4:边长为:边长为8和和4的矩形的矩形OABC的两边的两边分别在直角坐标系的分别在直角坐标系的X轴和轴和Y轴上,若轴上,若 沿对角线沿对角线AC折叠后,点折叠后,点B落在
16、第四象限落在第四象限B1处,设处,设B1C交交X轴于点轴于点D,求(,求(1)三)三角形角形ADC的面积,(的面积,(2)点)点B1的坐标,的坐标,(3)AB1所在的直线解析式。所在的直线解析式。OCBAB1D123E(二)(二)折叠三角形折叠三角形例例1、如图,小颍同学折叠一个直角三角形、如图,小颍同学折叠一个直角三角形的纸片,使的纸片,使A与与B重合,折痕为重合,折痕为DE,若已知,若已知AC=10cm,BC=6cm,你能求出你能求出CE的长吗?的长吗?CABDE例例2:三角形:三角形ABC是等腰三角形是等腰三角形AB=AC=13,BC=10,将,将AB向向AC方向方向对折,再将对折,再将
17、CD折叠到折叠到CA边上,折痕边上,折痕CE,求三角形求三角形ACE的面积的面积ABCDADCDCAD1E勾股定理勾股定理的拓展训的拓展训 练练三三DABC3、在等腰ABC中,ABAC13cm ,BC=10cm,求ABC的面积和AC边上的高。ABCD131310HBHACADBC21214、 已知等边三角形已知等边三角形ABC的边长是的边长是6cm,(1)求高求高AD的长;的长;(2)SABCABCD解:解:(1)ABC是等边三角形,是等边三角形,AD是高是高在在RtABD中中,根据勾股定理根据勾股定理222BDABAD cmAD3327936 ADBCSABC 21)2()(39336212
18、cm 321 BCBD5、 如图,如图,ACB=ABD=90,CA=CB,DAB=30,AD=8,求,求AC的长。的长。解:解:ABD=90,DAB=30BD= AD=421在在RtABD中中,根据勾股定理根据勾股定理484822222 BDADAB在在RtABC中,中,CBCACBCAAB 且且,222242122222 ABCACAAB62 AC又又AD=8ABCD308 6、 如图,在如图,在ABC中,中,AB=AC,D点在点在CB延长线延长线上,求证:上,求证:AD2-AB2=BDCDABCD证明:证明:过过A作作AEBC于于EEAB=AC,BE=CE在在Rt ADE中,中, AD2=AE2+DE2在在Rt ABE中,中, AB2=AE2+BE2 AD2-AB2=(AE2+DE2)-(AE2+BE2)= DE2- BE2= (DE+BE)( DE- BE)= (DE+CE)( DE- BE)=BDCD“数学海螺数学海螺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年定制培训空间租赁协议细则
- 2024年度户外广告牌使用协议
- 2024饮用水业务协议参考格式
- 2024建设项目造价分析服务协议
- DB11∕T 1711-2019 建设工程造价技术经济指标采集标准
- 2024煤炭大宗交易协议模板例文
- 2024专业餐饮加盟经营协议样本
- 2024年氧气乙炔买卖协议范本
- 2024装修公积金贷款协议条款样本
- 2024年停车场综合服务承包协议典范
- 第16讲 国家出路的探索与挽救民族危亡的斗争 课件高三统编版(2019)必修中外历史纲要上一轮复习
- 2024年时事政治考点大全(173条)
- 书籍小兵张嘎课件
- 生鲜猪肉销售合同模板
- 2024年经济师考试-中级经济师考试近5年真题集锦(频考类试题)带答案
- 2024年黑龙江哈尔滨市通河县所属事业单位招聘74人(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 私募基金管理人-廉洁从业管理准则
- 医疗器械质量方针和目标管理制度
- 北京市城管执法行政处罚裁量区域分类管理台帐
- 5.1+走近老师(课件)2024-2025学年七年级道德与法治上册
- 退役军人事务员职业技能理论考试复习题及答案
评论
0/150
提交评论