版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 函数、极限和连续1.1 函数一、 主要内容 函数的概念 1. 函数的定义: y=f(x), xd定义域: d(f), 值域: z(f).2.分段函数: 3.隐函数: f(x,y)= 04.反函数: y=f(x) x=(y)=f-1(y) y=f-1 (x)定理:如果函数: y=f(x), d(f)=x, z(f)=y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f-1(x), d(f-1)=y, z(f-1)=x且也是严格单调增加(或减少)的。 函数的几何特性1.函数的单调性: y=f(x),xd,x1、x2d 当x1x2时,若f(x1)f(x2),则称f(x)在d内单调增加
2、( );若f(x1)f(x2),则称f(x)在d内单调减少( ); 若f(x1)f(x2),则称f(x)在d内严格单调增加( );若f(x1)f(x2),则称f(x)在d内严格单调减少( )。 2.函数的奇偶性:d(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+t)=f(x), x(-,+) 周期:t最小的正数 4.函数的有界性: |f(x)|m , x(a,b) 基本初等函数1.常数函数: y=c , (c为常数)2.幂函数: y=xn , (n为实数)3.指数函数: y=ax , (a0、a1)4.对数函数: y=lo
3、ga x ,(a0、a1)5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x 复合函数和初等函数1.复合函数: y=f(u) , u=(x)y=f(x) , xx2.初等函数: 由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数。二、 例题分析例1. 求下列函数的定义域: 解:对于有: 0 解得: 1 对于有: 0 2 的定义域: 解: 由得: ,解得: 由 得: 0
4、, 2 的定义域: 例2.设f(x)的定义域为(-1,1)则f(x+1) 的定义域为 a.(-2,0), b.(-1,1), c.(0,2), d.0,2 解:-1x+11 -2x0即f(x+1) 的定义域为: x(-2,0)应选a.例3.下列f(x)与g(x)是相同函数的为a. , b. , c. ,d. , 解:a. ,b. , 应选bc. ,d. ,例4.求,的反函数及其定义域。解:,在(-3,+)内,函数是严格单调的反函数: 例5.设则其反函数 。解: 在内是严格单调增加的 又 取 即: (应填)例6.设函数和是定义在同一区间上的两个偶函数,则为 函数。解:设 = 是偶函数 (应填“偶
5、”)例7. 判断的奇偶性。解: 为奇函数 例8.设 ,则的周期为 。解法一: 设的周期为t, = 而 , 解法二: (应填)例9. 指出函数那是由些简 单函数复合而成的?解:令 , 则 , 则 , 则 是由:,复合而成的。例10. 已知,则等于 a. , b. , c. , d. 解: 或 (应选a)例11. 已知求的表达式。解:解得 1.2 极 限一、 主要内容极限的概念1. 数列的极限: 称数列以常数a为极限;或称数列收敛于a.定理: 若的极限存在必定有界.2.函数的极限: 当时,的极限: 当时,的极限: 左极限: 右极限:函数极限存的充要条件:定理:无穷大量和无穷小量1 无穷大量: 称在
6、该变化过程中为无穷大量。 x再某个变化过程是指: 2 无穷小量: 称在该变化过程中为无穷小量。3 无穷大量与无穷小量的关系: 定理:4 无穷小量的比较: 若,则称是比较高阶的无穷小量; 若 (c为常数),则称与同阶的无穷小量; 若,则称与是等价的无穷小量,记作:; 若,则称是比较低阶的无穷小量。定理:若: 则:两面夹定理1 数列极限存在的判定准则: 设: (n=1、2、3) 且: 则: 2 函数极限存在的判定准则: 设:对于点x0的某个邻域内的一切点 (点x0除外)有: 且: 则:极限的运算规则 若: 则: 推论: 两个重要极限 1 或 2 二、 例题分析例1 求数列的极限。解: 例2计算 解
7、: 误解:=0例3 下列极限存在的是 a. b. c. d. 解:a. b. 不存在c. 应选cd. 不存在例4.当时,与是等价无穷小量, 则 。解: (应填2)例5.计算 (n=1,2,3,)解: (n=2,3,) 又: 由两面夹定理可得: 例6.计算下列极限 解: 解: 解法一: 共轭法 解法二: 变量替换法 设: 当时, 解法一:共轭法 解法二:变量替换法 设: 当时, 解法一: 解法二: 解:设: 当时, 结论: 解法一: 又 解法二:解法三:应用罗必塔法则 解法一: 解法二: 设当时,解法三: 例7.当时,若与为等价无穷小量,则必有 。解: (应填)结论:例8.若,则 。解: (应填
8、)例9.已知,求的值。解: 由 当时,原式成立。例10.证明:当时,与是等价无穷小量。证:只要证明 成立,即可。 设: 当时,结论:1.3 连续一、 主要内容 函数的连续性1. 函数在处连续:在的邻域内有定义, 1o 2o 左连续: 右连续:2. 函数在处连续的必要条件: 定理:在处连续在处极限存在 3. 函数在处连续的充要条件: 定理:4. 函数在上连续: 在上每一点都连续。 在端点和连续是指: 左端点右连续; 右端点左连续。 a+ 0 b- x5. 函数的间断点:若在处不连续,则为的间断点。间断点有三种情况: 1o在处无定义; 2o不存在; 3o在处有定义,且存在, 但。 两类间断点的判断
9、: 1o第一类间断点:特点:和都存在。可去间断点:存在,但,或在处无定义。 2o第二类间断点:特点:和至少有一个为, 或振荡不存在。无穷间断点:和至少有一个为函数在处连续的性质1. 连续函数的四则运算: 设, 1o 2o 3o 2. 复合函数的连续性: 则:3. 反函数的连续性: 函数在上连续的性质 1.最大值与最小值定理:在上连续在上一定存在最大值与最小值。 y y +m m f(x) f(x) 0 a b x m -m 0 a b x2. 有界定理: 在上连续在上一定有界。 3.介值定理: 在上连续在内至少存在一点 ,使得:, 其中: y y m f(x) c f(x) 0 a b x m
10、 0 a 1 2 b x 推论: 在上连续,且与异号 在内至少存在一点,使得:。 4.初等函数的连续性: 初等函数在其定域区间内都是连续的。三、 例题分析例1. 分段函数,在处是否连续?解: 由函数连续的充要条件定理可知:在 处连续。例2设函数,试确定常数k的值,使在定义域内连续。解:的定义域为: 当时, 是初等函数,在有定义不论k为何值,在内都是连续的。 当时, 是初等函数,在有定义不论k为何值, 在内都是连续的。 当时, (无穷小量乘以有界函数还等于无穷小量)只有当时,在处连续,只有当时,在定义域内连续。例3证明方程至少有一个根在1与2之间。证:设, 在 上连续 满足介值定理推论的条件。由定理可得:在内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金属锑项目可行性研究报告
- 2024-2025年中国短视频行业竞争格局分析及投资战略咨询报告
- 2024-2025年中国市内免税行业竞争格局分析及投资战略咨询报告
- 2025年中国沙滩帐篷行业发展潜力分析及投资方向研究报告
- 二零二五年度汽车行业铝合金零部件供应合同4篇
- 2025年智力残疾儿童康复项目定点机构自查报告
- 2025年中国五官科用药行业市场前景预测及投资战略研究报告
- 2025年方型铸铁煤器管行业深度研究分析报告
- 2025年立绒呢项目可行性研究报告
- 2025年度公路零担货运信息平台服务合同范本4篇
- 品牌策划与推广-项目5-品牌推广课件
- 信息学奥赛-计算机基础知识(完整版)资料
- 发烟硫酸(CAS:8014-95-7)理化性质及危险特性表
- 数字信号处理(课件)
- 公路自然灾害防治对策课件
- 信息简报通用模板
- 社会组织管理概论全套ppt课件(完整版)
- 火灾报警应急处置程序流程图
- 耳鸣中医临床路径
- 安徽身份证号码前6位
- 分子生物学在动物遗传育种方面的应用
评论
0/150
提交评论