版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 本科毕业论文 论文题目: 抽屉原理及其应用 学生姓名: 学号: 专业: 数学与应用数学 指导教师: 学 院: 数学科学学院 2012 年 5 月 20 日 毕业论文内容介绍 论文题目抽屉原理及其应用 选题时间2011.10.25完成时间2012.5.18 论文(设计) 字数 12750 关 键 词 抽屉原理;数论;离散数学;高等代数;抽象代数;ramsey 定 理;应用 论文题目的来源、理论和实践意义: 题目来源:学生自拟 研究意义: 研究抽屉原理在高等数学中数论、离散数学、高等代数、抽象代数等多个学科中的运 用,对其在高等数学各方面的运用进行较为全面的梳理总结,加深对抽屉原理的理解,使 复
2、杂的数学问题能够在抽屉原理的作用下得到灵活巧妙的解决. 论文(设计)的主要内容及创新点: 主要内容: 本文简述了抽屉原理普遍使用的简单形式、各种推广形式,着重阐述其在数论和离散 数学、高等代数及抽象代数中的应用,及在生活中的应用,可以巧妙地解决一些复杂问题, 并根据抽屉原理的不足之处引入抽屉原理的推广定理 ramsey 定理. 创新点: 以往抽屉原理的相关文章或集中于中小学数学方面或比较零散片面,本文的主要创新 点是就本人所学过的高等数学的几门学科中抽屉原理的应用进行比较全面的梳理总结. 生活中的应用这一部分本文区别于其它相关文章中大量的缺乏实际意义的事例,选取 与生活贴近的如赛程安排、资源分
3、配等问题进行阐述,更好地突出抽屉原理在实际生活中 的用处. 附:论文本人签名: 2012 年 5 月 20 日 目录 中文摘要1 英文摘要1 1.引言2 2.抽屉原理的形式2 3.抽屉原理在高等数学中的应用3 3.1 数论中的应用 3 3.2 离散数学中的应用 5 3.3 高等代数中的应用 8 3.4 抽象代数中的应用 9 4.抽屉原理在生活中的应用 10 5.抽屉原理的推广定理ramsey 定理 12 6.参考文献 16 抽屉原理及其应用 摘要:本文简述了抽屉原理普遍使用的简单形式、各种推广形式,着重阐述其 在数论和离散数学、高等代数及抽象代数中的应用,及在生活中的应用,可以巧 妙地解决一些
4、复杂问题,并根据抽屉原理的不足之处引入抽屉原理的推广定理 ramsey 定理. 关键词:抽屉原理;数论;离散数学;高等代数;抽象代数;ramsey 定理; 应用 dirichlet drawer principle and the application of it abstract:this paper introduces the widespread use of simple forms and all kinds of extended forms of dirichlet drawer principle,focusing on the application of dirichl
5、et drawer principle in the number theory ,discrete mathematics, hight algebra and abstract algebra ,and also the real life. it can solve ably some complicated problems,and according to the principle of drawer the shortcomings of the principle of introducing the drawer theorem ramsey theorem. keyword
6、s:dirichlet drawer principle; number theory; discrete mathematics; higher algebra; abstract algebra; ramsey theorem; application. 1.1.引言引言 抽屉原理又称鸽巢原理、鞋箱原理或重叠原理,是一个十分简单又十分重 要的原理.它是由德国著名数学家狄利克雷(p.g.t.dirichlet 1805-1855)首先发 现的,因此也叫作狄利克雷原理. 抽屉原理简单易懂,主要用于证明某些存在性或必然性的问题,不仅在数 论、组合论以及集合论等领域中有着广泛应用,在高等数学的其它
7、几门学科领 域中也是解决问题的有效方法. 本文总结了如何运用抽屉原理解决数论、离散数学、高等代数及抽象代数 中的问题,对抽屉原理在高等数学中的应用进行了梳理,将抽屉原理的解题思 路拓展到高等数学的其他领域,有助于更好地理解抽屉原理,并举例阐述了抽 屉原理在现实生活中的应用,以及根据抽屉原理的不足引出的 ramsey 定理. 2.2.抽屉原理的形式抽屉原理的形式 什么是抽屉原理?先举个简单的例子说明,就是将 3 个球放入 2 个篮子里, 无论怎么放,必有一个篮子中至少要放入 2 个球,这就是抽屉原理.或者假定一 群鸽子飞回巢中,如果鸽子的数目比鸽巢多,那么一定至少有一个鸽笼里有两 只或两只以上的
8、鸽子,这也是鸽巢原理这一名称的得来. 抽屉原理简单直观,很容易理解.而这个看似简单的原理在高等数学中有着 很大的用处,对于数论、离散数学、高等代数以及抽象代数中的一些复杂问题, 可以利用抽屉原理巧妙的解答出来. 下面首先从抽屉原理的形式入手,然后再研究它在高等数学中的应用. 我们最常用的抽屉原理只是抽屉原理的简单形式,就是将 n+1 个元素或者 更多的元素放入n个抽屉中,则至少有一个抽屉里放有两个或两个以上的元素. 除了这种比较普遍的形式外,抽屉原理还经许多学者推广出其他的形式. 陈景林、阎满富在他们编著的组合数学与图论一书中将抽屉原理抽象 概括成以下三种形式1: 原理 1. 把多于个的元素按
9、任一确定的方式分成个集合,则一定有一个nn 集合中含有两个或两个以上的元素. 原理 2. 把个元素任意放到个集合里,则至少有一个集合里至mn)(nm 少有个元素,其中k 原理 3. 把无穷个元素按任一确定的方式分成有限个集合,则至少有一个集合 中仍含无穷个元素. 卢开澄在组合数学 (第三版)中将抽屉原理(书中称为鸽巢原理)又进 行了推广2. 鸽巢原理:设 k 和 n 都是任意正整数,若至少有 kn+1 只鸽子分配在 n 个鸽 巢中,则至少存在一个鸽巢中有至少 k+1 只鸽子. 推论 1.有 m 只鸽子和 n 个鸽巢,则至少有一个鸽巢中有不少于+1 只 n m 1 鸽子. 推论 2.若将 n(m
10、-1)+1 个球放入 n 个盒子里,则至少有一个盒子有 m 个球. 推论 3.若是 n 个正整数,而且,则 12 , n m mm 12n mmm n 中至少有一个数不小于 r. 12 , n m mm 另外,抽屉原理还可以用映射的形式来表示,即:设和是两个有限集,ab 如果,那么对从到的任何满射,至少存在,使ababf 1 a 2 a . 12 f af a 3.3.抽屉原理在高等数学中的应用抽屉原理在高等数学中的应用 以上的几种形式就是我们解题时常用到的抽屉原理的表示形式,接下来, 在了解了抽屉原理的基本形式以及多位学者所发展的推广形式的基础上,我们 通过一些比较典型的实例来说明抽屉原理在
11、高等数学中数论、离散数学、高等 代数以及抽象代数这五个方面的应用. 3.13.1 数论问题中的应用数论问题中的应用 1 m nm n k m nm n ,当能整除时, ,当不能整除时. 例例 1 1.任意 5 个整数中,有其中 3 个整数的和为 3 的倍数. 证明证明 将整数分为形如 3k、3k+1 及 3k+2 这 3 类形式, 则我们可以将这 3 类整数看作是 3 个抽屉,将这 5 个整数看作元素放入这 3 个抽屉中. 由抽屉原理可知,至少存在 2=+1 个整数在同一抽屉中,即它们都是 3 15 形如(3k+m)的整数,m=0,1 或 2. 如果有 3 个以上的数在同一个抽屉中,则取其中的
12、任意三个数,它们的和 是形如 3(3k+m)的整数,即三者的和为 3 的倍数. 如果有 2 个整数在同一个抽屉中,则由抽屉原理知,在余下的 3 个数中有 2 个数在同一个抽屉中,余下的 1 个数在另一个抽屉中.在 3 个抽屉中各取一个 数,这 3 个数的形式分别为 3k ,3k +1,3k +2,则三者的和为 3(k +k +k ) 123123 +3,即为 3 的倍数. 例例 2 2.设有两组整数,而且每一组的数都是小于 n(nz )的互不相同的数,这 两组数的数目个数n,则存在一对分别取自两组的数使这两个数的和为 n. 证明证明 设这两组数为a ,a ,a、b ,b ,b. 12 p 12
13、 q 已知每一组的数都是小于 n(nz )的互不相同的数. 不妨设 a a a,那么对从 a 到 b 的任何满映ab 射 f,至少存在,使 f()=f().) 1 a 2 a 1 a 2 a s 中至少存在两个不同的元 nj j j j ni i i i x x x x x x x x 2 2 1 2 2 1 , 使,即,. ji xfxf ji axax 0 ji xxa 令,则即是我们所要求的,是 njni ji ji n xx xx xx 22 22 11 2 2 1 n2 2 1 n2, 21, 不全为零的整数,且满足 . nknxxxx jkikjkikk 2 , 2 , 12 例例
14、 7.7. 设为阶方阵,证明存在 1,使秩()=秩()=秩anni i a 1i a )( 2i a 证明证明 因为阶方阵的秩只能是这+1 个数之一.nn, 2, 1, 0n ,的个数多于秩的个数,由抽屉原理可知,存在,e 120 , nn aaaaaek 满足 1使lkln 秩()= 秩(), k a l a 但 秩()秩()秩(), k a 1k a l a 所以 秩()=秩(), k a 1k a 利用此式与秩的性质得 秩()秩()+秩()-秩(),abcabbcb 这里的是任意三个可乘矩阵,用数学归纳法可证cba, 秩()=秩(). mk a 1mk a 其中为非负整数,故命题的结论成
15、立. 秩()=秩()=秩. m i a 1i a )( 2i a 3.43.4 抽象代数中的应用抽象代数中的应用 例例 8.8.证明:有限群中的每个元素的阶均有限 证明证明 设 g 为 n 阶有限群,任取 ag,则由抽屉原理可知中必 231 , nn a aaaa 有相等的不妨设于是有,从而 a 的阶有限,11 st aatsn s t ae 例例 9.9.证明只含有限个理想的非零整环 r 必是域. 证明证明 根据魏得邦定理,只需证明 r 是除环即可. (设是环且,则 r 是除环当且仅当对 r 中任意元素,方程r1rba, 0 ax=b 或 ya=b 在中有解)r 在 r 中任取元素.ba,
16、0 考虑, 2 , 1, 1 iraryyan tt 易知,都是的理想., 32 rararar 但由于整环 r 只有有限个理想,根据抽屉原理. 必存在正整数 s 与 t 满足 s2,则存在最小正整数 r(p,q),使得当 nr(p,q)时,用红蓝两色涂的边,则或存在一个蓝色的,或存在一个红色 n k p k 的. p k ramsey 定理(狭义)的内容任意六个人中要么至少三个人认识,要么至少 三个不认识. ramsey 定理可以视为抽屉原理的推广,1947 年,匈牙利数学家把这一原理 引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证 明:任何六个人中,一定可以找到三个互
17、相认识的人,或者三个互不认识的人. ” 在1958 年 6-7 月号美国数学月刊同样也登载着这样一个有趣的问题 “任何六个人的聚会,总会有 3 人互相认识或 3 人互相不认识.”这就是著名的 ramsey 问题. 这个问题乍看起来,似乎令人匪夷所思.但如果懂得抽屉原理,要证明这个 问题是十分简单的: 我们用 a、b、c、d、e、f 代表六个人,从中随便找一个, 例如 a 吧,把其余五个人放到“与 a 认识”和“与 a 不认识”两个“抽屉”里 去,根据抽屉原理,至 少有一个抽屉里有三个人.不妨假定在“与 a 认识”的 抽屉里有三个人,他们是 b、c、d.如果 b、c、d 三人互不认识,那么我们就
18、找 到了三个互不认识的人; 如果 b、c、d 三人中有两个互相认识,例如 b 与 c 认 识,那么,a、b、c 就是三个互相认识的人.不管哪种情况,本题的结论都是成 立的. 或者我们可以用染色的方法.以 6 个顶点分别代表 6 个人,如果两人相识, 则在相应的两点间连一条红边,否则在相应的两点间连一蓝边. 命题 1.对 6 个顶点的完全图任意进行红、蓝两边着色,都存在一个红 6 k 色三角形或蓝色三角形. 证明如下 首先,把这 6 个人设为 a、b、c、d、e、f 六个点.由 a 点可以引出 ab、ac、ad、ae、af 五条线段. 设如果两个人认识,则设这两个人组成的线段为红色;如果两个人不
19、认识, 则设这两个人组成的线段为蓝色. 由抽屉原则可知这五条线段中至少有三条是同色的.不妨设 ab、ac、ad 为 红色.若 bc 或 cd 为红色,则结论显然成立. 若 bc 和 cd 均为蓝色,则若 bd 为红色,则一定有三个人相互认识;若 bd 为蓝色,则一定有三个人互相不认识. 上述的 ramsey 问题等价于下面的命题 1. 命题 1.对 6 个顶点的完全图任意进行红、蓝两边着色,都存在一个红 6 k 色三角形或蓝色三角形. 命题 1 运用抽屉原理可以很容易很简便地对其进行证明.现将命题 1 推广成 下面的命题 2. 命题 2.对六个顶点的完全图任意进行红、蓝两边着色,都至少有两个
20、6 k 同色三角形. 由于命题 2 是要证明至少存在两个同色三角形的问题,而抽屉原理一般只 局限在证明至少存在一个或必然存在一个的问题,所以对于上述命题抽屉原理 就显得无能为力,这时需要运用 ramsey 定理来解决问题. 证明 设是的六个顶点,由上面的命题 1 可知,对, 21 vv 6543 ,vvvv 6 k 任意进行红、蓝两边着色都有一个同色三角形,不妨设是红色三角 6 k 321 vvv 形.以下分各种情况来讨论 (1)若均为蓝边,如图 1 所示,则若之间有一蓝边, 615141 ,vvvvvv 654 ,vvv 不妨设为,则三角形为蓝色三角形;否则,为红色三角形. 54v v 54
21、1 vvv 654 vvv 图 1 图 2 (2)若中有一条红边,不妨设为红边,此时若边 615141 ,vvvvvv 41v v 中有一条红边,不妨设是红边,则是一红色三角形,见图 4342 ,vvvv 43v v 431 vvv 2. 以下就均为蓝边的情况对与相关联的边的颜色进行讨论. 4342 ,vvvv 4 v ()若中有一蓝边,不妨设为蓝边,如图 3,此时,若 6454 ,vvvv 54v v 均为红边,则是红色三角形;否则,或是蓝 5352 ,vvvv 532 vvv 542 vvv 543 vvv 色三角形. ()若均为红边,见图 4,此时,若之间有一条红边,不 6454 ,vv
22、vv 651 ,vvv 妨设为红边,则为红色三角形;否则,为蓝色三角形. 51v v 541 vvv 651 vvv 图 3 图 4 由以上对各种情况的讨论知,对的任意红、蓝两边着色均有两个同色三 6 k 角形. 从以上例子可知,抽屉原理在应用上确有不足之处,之上只是个特例,至 于在别的领域中的不足之处还需我们进一步的探索. 抽屉原理的应用领域十分广泛,涉及到高等数学的多个学科,并且在生活 中也有广泛的应用,可以巧妙的用于解决一些复杂问题,本文主要梳理总结了 它在数论、离散、高等代数及抽象代数中的应用,其不足之处也由 ramsey 定理 进行了补充,使其能够更好的应用与问题解决当中. 6.6.
23、参考文献参考文献 1陈景林,阎满富.组合数学与图论.北京中国铁道出版社出版,2000.04 2卢开澄.组合数学(第 3 版).北京清华大学出版社,2002.07 3濮安山.“高等代数中抽屉原理的应用”.哈师大自然科学学报 ,2001.06 4王向东,周士藩等.高等代数常用方法m.1989.11. 5杨子胥.近世代数.北京.高等教育出版社.2003.12 6严士健.抽屉原则及其它的一些应用j.数学通报,1959 7曹汝成.组合数学m.华东理工大学出版社,2000. 毕业论文(设计)选题审批表毕业论文(设计)选题审批表 学院:数学科学学院(章)系别/教研室:数学与应用数学时间:2011 年 10
24、月 25 日 题目名称抽屉原理及其应用 课题性质a 基础研究 b 基础应用研究 c 应用研究 教师姓名 职称讲师学位硕士 课题来源 a.科研 b.生产 c.教学 d.其它 e.学生 自拟 课 题 情 况 成果类别a.论文 b.设计 主要 研究 内容 与 研究 目标 本文简述了抽屉原理普遍使用的简单形式、各种推广形式,着重阐述其在数 论和离散数学、高等代数及抽象代数中的应用,及在生活中的应用,可以巧妙地解 决一些复杂问题,并根据抽屉原理的不足之处引入抽屉原理的推广定理 ramsey 定 理. 以往抽屉原理的相关文章或集中于中小学数学方面或比较零散片面,本文就 本人所学过的高等数学的几门学科中抽屉
25、原理的应用进行比较全面的梳理总结. 生活中的应用这一部分本文区别于其它相关文章中大量的缺乏实际意义的事 例,选取与生活贴近的如赛程安排、资源分配等问题进行阐述,更好地突出抽屉 原理在实际生活中的用处. 指导教师签字: 年 月 日 选题学生签字: 年 月 日 系所 或教 研室 审题 意见负责人签字: 年 月 日 学院 审批 意见学院学位分委员会主任签字: 年 月 日 本科毕业论文(设计)开题报告本科毕业论文(设计)开题报告 论文题目: 抽屉原理及其应用 学院名称: 数学科学学院 专 业: 数学与应用数学 学生姓名: 学 号: 指导教师: 2011 年 11 月 16 日 一、选题的性质一、选题的
26、性质 基础应用研究 2 2、选题的目的和意义选题的目的和意义 研究抽屉原理在高等数学中数论、离散数学、高等代数、抽象代数等多个学科中的运 用,对其在高等数学各方面的运用进行较为全面的梳理总结,加深对抽屉原理的理解,使 复杂的数学问题能够在抽屉原理的作用下得到灵活巧妙的解决. 三、与本课题相关的国内外研究现状,预计可能有所创新的方面三、与本课题相关的国内外研究现状,预计可能有所创新的方面 以往抽屉原理的相关文章或集中于中小学数学方面或比较零散片面,本文的主要创新 点是就本人所学过的高等数学的几门学科中抽屉原理的应用进行比较全面的梳理总结. 生活中的应用这一部分本文区别于其它相关文章中大量的缺乏实
27、际意义的事例,选取 与生活贴近的如赛程安排、资源分配等问题进行阐述,更好地突出抽屉原理在实际生活中 的用处. 4 4、课题研究的可行性分析课题研究的可行性分析 五、课题研究的策略、方法和步骤五、课题研究的策略、方法和步骤 六、预期成果形式描述六、预期成果形式描述 七、指导教师意见七、指导教师意见 指导教师签字: 年 月 日 八、学院学位分委员会意见八、学院学位分委员会意见 学院学位分委员会主任签字: 年 月 日 本科毕业论文(设计)教师指导记录表本科毕业论文(设计)教师指导记录表 学院:数学科学学院 系别:_ 专业:数学与应用数学 论文(设计)题目: 抽屉原理及其应用 学生姓名 学号指导教师
28、职称讲师 计划完成时间:2012 年 5 月 18 日 指导情况纪录(含指导时间、指导内容) 1、2011 年 11 月 20 日,指导老师开始指导论文的选题,对选题的角度,选题 的高度,所选课题所应该涵盖的范围及研究内容等应该注意的问题都作了一个 详尽的解释,经过几次的交流,最终在老师的指导下将题目敲定,并且对论文 的结构框架也有了大体的安排。 2、2012 年 4 月 16 日,在指导老师的指导下,依选定的题目开始搜集资料,整 理数据资料。 3、2012 年 5 月 5 日,在老师的指导下,进行论文的撰写,并将初稿上交。 4、2012 年 5 月 7 日,老师提出第一次的论文修改意见,内容
29、包括:论文格式、 标点符号、中英文摘要、关键词、应用数据、措辞、资料来源等。 5、2012 年 5 月 16 日,论文第二次修改完成以及开题报告指导修改完成。 指导教师签字: 学生签字: 学院学位分委员会主任签字: 年 月 日 指导教师意见指导教师意见 (包括选题的意义,资料收集或实验方法、数据处理等方面的能力,论证或实验是否合理, 主要观点或结果是否正确,有何独到的见解或新的方法,基础理论、专业知识的掌握程度 及写作水平等,并就该论文是否达到本科毕业论文水平做出评价) 成绩: 指导教师(签名): 年 月 日 注:成绩按优、良、中、合格、不合格五级分制计. 评阅人意见评阅人意见 (包括选题的意义,资料收集或实验方法、数据处理等方面的能力,论证或实 验是否合理,主要观点或结果是否正确,有何独到的见解或新的方法,基础理 论、专业知识的掌握程度及写作水平等,并就该论文是否达到本科毕业论文水 平做出评价) 成绩: 评阅人(签名
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲乙丙房屋买卖合同全解读
- 消防工程招投标文书
- 服务合同协议权威解读
- 童鞋品牌代理经销合同
- 施工安全保证书样本
- 信用担保借款合同的修改注意事项
- 标准借款协议书格式
- 粮油食品供应协议
- 室内外照明设计招标
- 批发兼零售合作劳务合同
- 投资控股合同
- 2025蛇年七言春联带横批(60幅)
- 部编人教版小学语文六年级2024-2025学年度第一学期期末练习试卷
- 2021-2022学年统编版道德与法治五年级上册全册单元测试题及答案(每单元1套共6套)
- 人力资源外包投标方案
- 研究生英语议论文范文模板
- 燃气安全知识测试题(含答案)
- 串宫压运推流年密技
- 拆迁安置房小区物业管理的问题与对策
- 学校固定资产管理中的几点问题、原因及对策
- 量子力学学习心得(三)
评论
0/150
提交评论