伯努利方程的应用_第1页
伯努利方程的应用_第2页
伯努利方程的应用_第3页
伯努利方程的应用_第4页
伯努利方程的应用_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,伯 努 利 方 程 及 其 应 用 伯努利,1738,瑞士。动能与压强势能相互转换。 沿流线的伯努利方程 将牛顿第二定律应用于控制体内的流体元,沿流线切线方向 整理后 因为 将流体元的加速度转换成欧拉形式的加速度,沿流线的质点导数为 则导出 此式为一维欧拉方程,使用下述关系将方程沿流线积分。两边乘以ds 得: 沿流线积分 此式为欧拉方程的积分式,适合于可压、无粘不定常运动。 对于不可压定常流动,则可简化为 此式为伯努利方程,三项分别表示单位质量流体具有的动能、位 置势能和压强势能。即总机械能守恒。 应用伯努利方程时常采用沿流线上任两点的总机械能值相等的形式。 伯努利方程使用的限制条件(1)无

2、粘性流体,(2)不可压流体 (3)定常流(4)沿流线。 加入能量损失就可适应粘性流体。 皮托(pitot )测速管:总压强与动压强 皮托测速管又称为皮托-静压管,简称皮托管,为纪念法国人皮托 命名。皮托测速管由粗细两根同轴的圆管组成,细管(直径约为 1.5 mm)前端开孔(0点),粗管(直径约为6 mm在距前端适 当长距离处的侧壁上开数个小孔(B点),在孔后足够长距离处 两管弯900成柄状测速时管轴线沿来流方向放置设正前方的流 速保持为V,静压强为p,流体密度为。粗细两管中的压强被引 入U形测压计中,U形管中液体密度 m。试求用U形管液位差h 表示流速v的关系式。 解:设流动符合不可压缩无粘性

3、流体定常流动条件。从皮托管正 前方A点到端点0再到侧壁孔B点的AOB线是一条流线,A点 的速度和压强分别为v和p ,沿流线AO段按(B4.3.4) 式列伯努利方程 2 2 十gzA + P号gzo吨 在皮托管端点0,流体速度降至零Vo 0,称为驻点,P0称为驻点压 强,U形管右支管测到的即是驻点压强.由于 za zo,由(a)式可 得 上式中1 V2称为动压强,为流体质点的动能全部转化为压强势能时 应具有的压强(b)式表明驻点压强为静压强和动压强之和,故 Po称为总压强由(b)式动压强可表为 由于皮托管较细,流线上的AB两点的位置差可忽略,伯 努利方程为 因VB V,由上式PB P,即U形管左

4、支通过皮托管侧壁小孔测到的是当地静压强. 在 U形管内列压强关系式可得 由于实际流体具有粘性及皮托管加工误差等原因,流体动压强转化为U形管内液位 差读数存在误差,需乘上一个修正系数 k ,由(c) , (d)式可得 k称为皮托管系数,可通过用标准皮托管作标定测量后确定.由( e)式可得 小孔出流:托里拆利公式及缩颈效应 从一个大容器侧壁下部距离液面为 h处开一个小孔,设液面水位不变,求出流速度 和出流流量 解: = 2j2g tan2h 22h 2 235 0品ta巧 沿流线法向方向的速度压强关系式 由牛顿第二定律:得 g A n cosp A (p P)A n A 2 A n R考虑到几 何

5、关系,有 整理,得 忽略重力,得 若密度为常数,则有 此式为沿流线法向方向的伯努利方程,应用条件为(1)无粘性流 体,(2)不可压流体(3)定常流(4)沿流线法向。 如果流线位直线时,曲率半径为无限大,则 此式与静压力公式相同。 沿总流的伯努利方程 将伯努利方程三项机械能在有效截面A上按质量流量 积分,总机械能沿流束仍保持守恒,即 以截面平均流速 V代替不均匀的速度分布,引入动能 修正因子。有 考虑到质量守恒,得 对于一个缓变流的两个截面,有 (gz P3 gz gzO (gz2 p5 h gz2 gz4) mg g(z4 Z3) 应用连续 i)g 性方程 伯努利方程的意义 不可压缩粘性流体内

6、流 管道入口流动示意图, 设管直径为d,管口外均流速度为U。从开始,流体在壁面上被滞止,形成边界层。 边界层外仍保持为均流,称为核心流。由壁面不滑移条件引起壁面附近的流速降低, 为满足质量守恒定律,核心流流速增大,速度廓线由平坦逐渐变为凸出。随着边界 层厚度不断增长,核心流不断加速,直至处四周的边界层相遇,核心流消失,整个 管腔被边界层流动充满,此后速度廓线不再变化。称为入口段流动或发展中流动的 速度廓线,均可通过求解 N-S方程获得。 入口段的压强损失,可利用动量方程求解。由例B4.4.1D推导得管道入口段压强损 失系数为 式中po,pL分别为x=0和x=L处的压强。称为达西摩擦因子,它是管

7、道形状,雷诺数 和管壁粗糙度的函数,在充分发展定常流动中为常数(将在C3.6中详细讨论)。 (C3.2.1)式中的项为入口段中相应于充分发展段中的压强损失。K为入口段中特有 的附加压强损失,它由两部分组成:将均流加速成充分发展流动所需要的压强系 数; 入口段附加压强损失K是入口段长度L,雷诺数Red及管道形状因子的函数,可运用 有限差分法求解N-S方程获得。根据计算的K值可估算入口段的长度L。圆管入口段 长度与直径的比值的典型公式为 L 0.06Red 层流上 4.4(Red)1/6 湍流 dd 对层流,最大的入口段长度为 LMaF0.06 x 2300X d=138d,(Re=2300) 对

8、湍流,由于边界层厚度增加较快,入口段长度比层流短的多 46 Lt=(2040)d,(Re=10 10) 在实际的工程长管线中,如口段长度所占的比例往往是微不足道的,因此除特殊 要求为其通常不予考虑,全长均按充分发展流动处理,但对一些较短的管道,则应 该考虑入口段影响。 平行平板间的层流流动是 N-S方程具有解析解的典型例子之一,包括固定平板间 的压差流,平板间作相对平移运动的剪切流及两种流动同时存在的一般库埃特流。 分析库埃特流不仅有理论意义而且有工程背景,如气体或液体在活塞表面与缸壁间 的缝隙中的泄漏流动,机床中滑块与导轨面的间隙中的润滑油流动,及滑动轴承的 轴颈和轴承的间隙中润滑油流动等等

9、。 由于缝隙(b)很小,流动雷诺数不大,属于层流流态,均可用简化的无限大平 行平面间的粘性流体定常层流模型来分析。 圆管湍流流动 湍流尚无确切和全面的定义。 湍流运动是有各种大小和不同涡量的涡旋叠加而形成的流动, 在湍流中随机运动和拟序运动并存。 圆管流动沿程 水头形式的伯努利方程式推广形式为 上式中称为水头损失,量纲是L。圆管流动中水头损失由两部分组成: (1)沿程损失(hf )是沿等截面管流动时管壁粘性切应力引 起的摩擦损失; (2)局部损失(hm),是由截面积变化,流动分离和二次流等 局部因素引起的损失。 达西公式 在水平直圆管定常流动中只有沿程损失,因 v V2,Z1 Z2,由(Bb)

10、式中可得 h Pl P2 P f g g 用量纲分析法求得 实验表明P与l/d成正比关系,习惯上用 Re, /d代替f Re, /d。称为圆管沿程 阻力因子或无量纲摩擦因子,因此上式可表为 将上式代入(C3.6.1 )式可得 上式中l/d称为几何因子,V为管内平均速度,V2/2g为速度水头。 局部损失 管入出口、管截面变化部位,弯头和三通、各种阀门等。 原因:(1)截面变化引起速度重新分布;(2)流体元相互碰 撞和增加摩擦;(3) 二次流;(4)流动分离成涡。 计算式: hm 2g K为局部损失因子,V为制定部位的平均速度。 入口 K=0.5,出口 K=1 管截面突然扩大:局部损失,如图所示,

11、平均速度分别是 V1和V2,求局部损失因 子。 解:取图示虚线所示控制体CV由连续性方程 实验证明在死水区(拐角分离区)的压强 P Pl。忽略侧壁上的切应力作用,由动 量方程 由伯努力方程 由(b)(c) 式 (d)式中Vi为小管中的速度。 含局部损失的管道损失 当管道流动中局部损失在总损失中所占比重不能忽略时,管道计算中应将沿程损 失和局部损失均考虑在内,全部损失为所有沿程损失和局部损失之和 在可压缩流体流动中要考虑的流动参数除速度和压强外还要加上密度和温度。连 续性方程不再独立,必须与能量方程和状态方程联合求解,求解的结果显然与不 可压缩流体的流动规律不同。例如在一定条件下,可压缩气体在截

12、面积逐渐减小 的收缩管道内作减速流动,而在截面积逐渐增大的扩张管道内可作加速流动,均 不违背质量守恒定律。 通常用压强p、密度和温度T三个物理量表示气体的状态,称为基本状态参数。 完全气体的基本状态参数满足如下方程 式中R称为气体常数,由下式决定 Rm称为通用气体常数,数值是 8314.3J/kg?mol?K, m为气体平均分子量。 气体的内能通常指分子热运动所具有的动能。完全气体的内能是温度的单值函数 其微分式可表示为 Cv称为气体的比定容热容,它也仅是温度的函数 Cv(T) 单位质量气体的焓称为比焓,记为 h(J/kg),定义为 h=e+ 卫在热力学中称为流动功,在流体力学中称为压能。焓是

13、内能和压能之和。完全 气体的焓的微分式可表示为 Cp称为气体的比定压热容,它仅是温度的函数 Cp仃) 引入比热比 与Cp,Cv的关系为 如空气 热力学第一定律表述为:对气体所加的热能等于气体内能的增加和气体对外所做 功之和。表达式为 对完全气体,可分别表示为 单位质量气体的熵称为比熵 定义为 微分式为 热力学第二定律表述为:气体在绝热的可逆过程中熵值保持不变;在不可逆过程 中熵值必定增加。对完全气体, 绝热而又可逆的过程称为等熵过程,ds=O,气体作无摩擦绝热流动时为等熵流动。 对完全气体等熵流动可得 完全气体作等熵流动时的状态参数关系式,常用表达式为 E常数 声速来表示流体的可压缩性。声速是

14、弹性介质中微弱扰动传播速度的总称。 在图C5.2.2a中有一竖向的微弱压强扰动波在精致的流体介质(V=0)中以声速c 向左运动。设某瞬间波前的流体压强和密度分别为p,。波后的流体速度变成dV 压强为p+dp,密度为 d。对地面上的观察者而言,这是一个非定常流动。为了 便于考察波前波后流体状态参数的变化关系,在扰动层上取一薄层控制体CV两 边的面积均为A,并将坐标系固定在控制体上与波一起前进,对站在坐标系上的 观察者而言,流动是定常的。左边的流体压强为p,密度为,以速度c流入控制 体;然后以压强p+dp,密度 d,及速度为c-dV流出控制体。由一维连续性方 程(B4.2.11 )式有 展开后得

15、略去二阶小量项可得 角标s表示等熵过程。 上式是完全气体的理论声速公式 当一个强烈的压缩扰动在超声速流场中传播时,在一定条件下将形成强压缩波阵 面,称为激波.激波是流动参数的强间断面,流体通过激波后流动参数发生突跃地 升高,而速度则突跃地降低。 截面变化与Ma关系 设管内流动沿管轴x方向,平均速度为V。由一维定常流动欧拉运动方程式 式中p为截面上的平均压强,可得 由一维可压缩定常流动连续性方程 对式取微分,并用 va除,可得 利用(C5.4.2 或由 (C5.4.2) 式 从(C5.4.2 Ma1时,Ma2 1 O,dA与dV异号,与dp同号; Ma 1时,Ma2 1 O,dA与dV同号,与dp异号 说明(图 C5.4.1): 亚声速流(Ma0)和减压(dpo)中,将减速dV0)和增压(dp0)与不可压缩流动相似。 超声速流(Ma1在收缩管(dA 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论