




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、7-71求求函函数数),(yxfz 极极值值的的一一般般步步骤骤:第一步第一步 解方程组解方程组, 0),( yxfx0),( yxfy求求出出实实数数解解,得得驻驻点点.第第二二步步 对对于于每每一一个个驻驻点点),(00yx,求求出出二二阶阶偏偏导导数数的的值值 A、B、C.第第三三步步 定定出出ACB2的的符符号号,再再判判定定是是否否是是极极值值. 回顾:求极值的一般步骤7-72则可按如下方法求最值:则可按如下方法求最值: 将函数在区域将函数在区域 D D 内的所有驻点处的内的所有驻点处的函数值及在函数值及在D D 的边界上的最大值和最小的边界上的最大值和最小值相互比较,其中最大者即为
2、最大值,值相互比较,其中最大者即为最大值,最小者即为最小值最小者即为最小值. . 与一元函数相类似,我们可以利用函数的与一元函数相类似,我们可以利用函数的极值来求函数的最大值和最小值极值来求函数的最大值和最小值.回顾:多元函数的最值的求法 设函数在有界闭区域设函数在有界闭区域 D 上连续,在上连续,在D内内可微且只有有限个驻点。可微且只有有限个驻点。7-737.7 条件极值与拉格朗日乘数法实例:求表面积为实例:求表面积为 S(固定固定) 、体积最大的长方体积最大的长方体的体积体的体积( , , )V x y zxyz 222xyyzzxS限制条件限制条件求极值求极值条件极值条件极值:对自变量有
3、附加条件的极值:对自变量有附加条件的极值7-74求条件极值的方法1. 转化为无条件极值问题转化为无条件极值问题.2. 利用拉格朗日乘数法利用拉格朗日乘数法.7-75 要找函数要找函数),(yxfz 在条件在条件0),( yx 下的下的可能极值点,可能极值点, 1. 先构造函数先构造函数),(),(),(yxyxfyxF , 其中其中 为拉格朗日乘数为拉格朗日乘数. 2. 由由 . 0),(, 0),(),(, 0),(),(yxyxyxfyxyxfyyxx 解出解出 , yx,其中,其中(yx,)就是可能的极值点的坐就是可能的极值点的坐标标. 拉格朗日乘数法7-76拉格朗日乘数法可推广到自变量
4、多于两个的情况:拉格朗日乘数法可推广到自变量多于两个的情况:要找函数要找函数),(tzyxfu 在条件在条件 0),( tzyx ,0),( tzyx 下的极值,下的极值, 先构造函数先构造函数 ),(),(tzyxftzyxF ),(),(21tzyxtzyx 其中其中21, 均为拉格朗日乘数,可由均为拉格朗日乘数,可由 偏导数为零及偏导数为零及约束约束条件解出条件解出tzyx,,即得可能的极值点的坐标,即得可能的极值点的坐标. 更一般的情形7-77 将将正正数数 12 分分成成三三个个正正数数zyx,之之和和 使使得得zyxu23 为为最最大大. 解解令令 )12(),(23 zyxzyx
5、zyxF , 120020323322zyxyxFyzxFzyxFzyx 解解得得唯唯一一驻驻点点)2 , 4 , 6(,.691224623max u则则故故最最大大值值为为 根据具体情况从实际问题的物理、几何、经济意义根据具体情况从实际问题的物理、几何、经济意义可以判断是否为最值可以判断是否为最值例题17-78 在在区区域域22( , )|50 x yxy 上上,求求122 yxyxz的的最最大大值值和和最最小小值值. , 0)1()(2)1(22222 yxyxxyxzx, 0)1()(2)1(22222 yxyxyyxzy得驻点得驻点)21,21(和和)21,21( ,解解由由,21)
6、21,21( z,21)21,21( z例题27-79在边界上在边界上22( , )|50 x yxy122 yxyxzz(5,5)=10/51z(-5,-5)=-10/51最最大大值值为为21,最最小小值值为为21 . 比较可知比较可知101011515052例题2续利用拉格朗日乘数法得可能的最值点为利用拉格朗日乘数法得可能的最值点为(5,5)以及()以及(5,5):):7-710曲线曲线221zxyxyz 上面哪一点到原点最近上面哪一点到原点最近?讨论讨论2d记为记为222( , , )f x y zxyz122222212( , , ,)()(1)F x y zxyzxyzxyz 例题3
7、 (p252,例2),( zyxP:设设椭椭圆圆上上的的点点为为解解7-7111313,23,2295 3xyzd 12121222022020 xyzFxxFyyFz 22010 xyzxyz例题3(续)7-712小结求条件极值的方法求条件极值的方法:1. 转化为无条件极值转化为无条件极值.2. 利用拉格朗日乘数法利用拉格朗日乘数法. 注意要正确注意要正确 地写出目标函数和约束条件地写出目标函数和约束条件.7-713思考题思考题 若若),(0yxf及及),(0yxf在在),(00yx点点均均取取得得极极值值, 则则),(yxf在在点点),(00yx是是否否也也取取得得极极值值?思考题7-71
8、4思考题解答思考题解答不不是是.例如例如 22),(yxyxf ,当当0 x时时,2), 0(yyf 在在)0 , 0(取取极极大大值值;当当0 y时时,2)0 ,(xxf 在在)0 , 0(取取极极小小值值;但但22),(yxyxf 在在)0 , 0(不不取取极极值值.思考题解答7-715多元函数的极值多元函数的极值拉格朗日乘数法拉格朗日乘数法(取得极值的必要条件、充分条件)(取得极值的必要条件、充分条件)多元函数的最值多元函数的最值小结7-716一、一、 填空题填空题: :1 1、 函数函数)4)(6(),(22yyxxyxf 在在_点取点取得极得极_值为值为_._.2 2、 函数函数xy
9、z 在附加条件在附加条件1 yx下的极下的极_值值为为_._.3 3、 方程方程02642222 zyxzyx所确定的所确定的函数函数),(yxfz 的极大值是的极大值是_,_,极小值极小值是是_._.二二、 在在 平平 面面xoy上上 求求 一一 点点 , , 使使 它它 到到0, 0 yx及及0162 yx三三直直线线的的距距离离平平方方之之和和为为最最小小. .三三、 求求内内接接于于半半径径为为a的的球球且且有有最最大大体体积积的的长长方方体体. .练练 习习 题题7-717四、四、 在第一卦限内作球面在第一卦限内作球面1222 zyx的切平面的切平面, ,使使得切平面与三坐标面所围的四面体的体积最小得切平面与三坐标面所围的四面体的体积最小, ,求求切点的坐标切点的坐标. .7-718一一、1 1、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025授权拍卖合同模板
- 分支机构合同范本(2篇)
- 2024年09月河北丰宁满族自治县事业单位招聘110人(含卫生类)笔试历年专业考点(难、易错点)附带答案详解
- 玻璃精密光学仪器考核试卷
- 2024年09月江苏句容市卫生健康系统所属事业单位第二批招聘8人笔试历年专业考点(难、易错点)附带答案详解
- 液压垂直弯道器的工作优势
- 2024年09月广西医科大学附属肿瘤医院第三批人才需求8人笔试历年专业考点(难、易错点)附带答案详解
- 租赁设备的智能化管理与优化实践案例考核试卷
- 2025年:合同续约、终止与解除协议通知书
- 2024年09月山西高平市医疗集团招聘55人笔试历年专业考点(难、易错点)附带答案详解
- 2024年湖北省中考语文真题(学生版+解析版)
- 告诉我地址 -从IPv4到IPv6的传奇 课件 2024-2025学年清华大学版(2024)B版初中信息技术七年级上册
- 医学教程 《急性阑尾炎幻灯》
- 重型货车整车运输协议样本
- 读后续写-期中真题汇编(原卷版)
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 允许孩子犯错课件
- 项目建筑智能化工程施工招标文件模板
- 110kv线路施工方案
- 大东鞋业合同协议书
- 用所给词的适当形式填空(专项训练)人教PEP版英语六年级上册
评论
0/150
提交评论