版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数字通信原理实验报告实验三DPSK调制解调实验学院 计算机与电子信息学院 专业 班级 姓名 学号 指导教师 实验报告评分:_ 实验三 DPSK调制、解调实验一、实验目的1. 加深对DPSK调制原理的理解及其硬件实现方法2. 进一步了解DPSK解调原理各种锁相环解调的特性,掌握同相正交环的解调原理及其硬件实现方法3. 加深对载波提取电路相位模糊度的理解4. 加深对眼图几个主要参数的认识二、实验内容1. DPSK调制实验1) 载波、时钟信号实验 4) DPSK调制实验2) 伪随机基带信号源实验3) 差分编码实验2. DPSK解调实验1) 同相正交环解调DPSK实验 4) 基带信号解调、相位锁定实验
2、2) 压控振荡器实验 5) 基带信号判决实验3) 载波900相移实验 6) 差分译码实验3. DPSK调制解调系统实验1) 同步带测量实验 4) DPSK调制解调眼图实验2) 捕捉带测量实验3) 载波提取锁相环相位模糊度实验4. 学生常犯的测量错误三、实验原理和电路说明1. 调制2DPSK系统的调制部分框图如图3.2所示,原理电路示于图3.1。下面分几部分说明。1.1 M序列发生器实际的数字基带信号是随机的,为了实验和测试方便,一般都是用M序列发生器产生一个伪随机序列来充当数字基带信号源。按照本原多项式组成的五级线性移M序列发生器差分编码调 相10晶 振10MH222DPSK P2 P3 P6
3、 P1 P5图3.2 2DPSK调制部分框图位寄存器,就可得到31位码长的M序列。码元定时与载波的关系可以是同步的,以便清晰观察码元变化时对应调制载波的相位变化;也可以是异步的,因为实际的系统都是异步的。本实验的M序列由IC3、1C4、IC5、IC6产生,码元速率为lMb/s。1.2 相对调相和绝对移相移相键控分为绝对移相和相对移相两种。以未调载波的相位作为基准的相位调制叫作绝对移相。以二进制调相为例:取码元为“1”时,调制后载波与未调载波反相;取码元为“0”时,调制后载波与未调载波同相;“1”和“0”时调制后载波相位差1800。 绝对移相的波形如图3.3所示。在同步解调的PSK系统中,由于收
4、端载波恢复存在相位含糊的问题,即恢复的载波可能与未调载波同相,也可能反相,以至使解调后的信码出现“0”、“1”倒置,发送为“1”码,解调后得到“0”码;发送为“0”码,解调后得到“1”码。这是我们所不希望的,为了克服这种现象,人们提出了相对移相方式。相对移相的调制规律是:每一个码元的载波相位不是以固定的未调载波相位作基准的,而是以相邻的前一个码元的载波相位来确定其相位的取值。例如,当某一码元取“1”时,它的载波相位与前一码元的载波反相;码元取“0”时,它的载波相位与前一码元的载波同相。相对移相的波形如图3.4所示。图3.3 绝对移相的波形示意图在一般情况下,相对移相可以通过对信码进行变换和绝对
5、移相来实现。将信码经过差分编码变换成新的码组一相对码,再利用相对码对载波进行绝对移相,使输出的己调载波相位满足相对移相的相位关系。设绝对码为an,相对码为bn,则二相差分编码的逻辑关系为: (1)差分编码的功能可由一个模二和电路和一级移位寄存器组成。本实验用IC6: A和IC8完成。调相电路可由模拟相乘器实现,也可由数字电路实现。实验中的调相电路是由数字选择器(74LS153)完成的。当2脚和14脚同时为高电平时,7脚输出与3脚输入的0相载波相同;当2脚和14脚同时为低电平时,7脚输出与6脚输入的相载波相同。这样就完成了差分信码对载波的相位调制。图3.5示出了一个数字序列的相对移相的过程。图3
6、.4 相对移动的波形示意图图3.5 绝对码实现相对移相的过程对应于差分编码,在解调中有一差分译码。差分译码的逻辑为: (2) 本实验由IC9、IC10完成。将(1)式代人(2)式,得这样,经差分译码后就恢复了原始的发码序列。1.3数字调相器的主要指标在设计与调整一个数字调相器对,主要考虑的性能指标是调相误差和寄生调幅。(1)调相误差由于电路不理想,往往引进附加的相移,使调相器输出信号的载波相位取值为00及1800+,我们把这个偏离的相角称为调相误差。调相器的调相误差相当于损失了有用信号的能量。(2)寄生调幅理想的二相相位调制器,当数码取“0”或“1”时,其输出信号的幅度应保持不变,即只有相位调
7、制而没有附加幅度调制。但由于调制器的特性不均匀及脉冲高低电平的影响,使得“0”码和“1”码的输出信号的幅度不等。设“0”码和“1”码所对应的输出信号幅度分别为Uom及Uim,则寄生调幅为:2解调2PSK系统的解调部分框图如图3.6所示,原理电路如图3.7所示。2.1 同相正交环绝大多数二相PSK信号采用对称的移相键控,因而在码元1、0等概条件下都是抑载波的,即在调制信号的频谱中不含载波线谱,这样就无法用窄带滤器从调制信号中直接提取参考相位载波。对于PSK而言,只要用某种非线性处理的方法去掉相位调制,就能产生与载波有一定关系的分量,恢复出同步解调所需要的参考相位载波,实现对被抑制掉的载波进行跟踪
8、。 从PSK信号中提取载波的常用方法是采用载波跟踪锁相环,如平方环、同相正交环、逆调制环和判决反馈环等。这几种锁相环的性能特点列于表1中。本实验采用同相正交环。同相正交环又叫科斯塔斯(Costas)环。实验原理如图3.7所示。在这种环路里,误差信号是由两个鉴相器提供的。压控振荡器(VCO)给出两路相互正交的载波到鉴相器。输入的2PSK信号经鉴相后在由低通滤波器滤除载波频率以上的高频分量,得到基带信号Ud1、Ud2,这时的基带信号包含着码元信号,无法对压控振荡器(VCO)进行控制。将Ud1和Ud2经过基带模拟相乘器相乘,就可以去掉码元信息,得到反应VCO输出信号与输入载波间相位差的控制电压。表1
9、 几种锁相环的性能特点锁相环特性平方环同相正交环逆调制环判决反馈环环路工作频率f2f0ff0ff0ff0等效鉴相特性正弦正弦近似距形近似距形解调能力无有有有电路复杂程度鉴相器工作频率高需用基带模拟相乘器需用二次调制器需用基带模拟调制器2.2集成电路压控振荡器(IC-VCO)压控振荡器(VCO)是锁相环的关键部件,它的频率调节和压控灵敏度决定于锁相环的跟踪性能。实验电路采用一种集成电路的压控振荡器74S124。集成片配以简单的外部元件并加以适当调整,即可得到令人满意的结果。如图3.8所示。 集成片的每一个振荡器都有两个电压控制端,Vr用于控制频率范围(14脚),Vf用于控制频率范围调节(1脚)。
10、外接电容器Cext用于选择振荡器的中心频率。当Vr和Vf取值适当,振荡器的工作正常时,振荡器的频率f0与Cext的关系近似为: f0与Cext 的关系曲线如图3.9所示。当固定Cext时,Vr与Vf有确定的函数关系。以Vr=Vf=2V时的输出频率f0为归一化频率单位,由实验数据可画出以Vr为参变量时归一化频率fn随Vr的变化曲线如图3.10所示。由图3.lO的曲线可以看出,随Vr的增大,VCO的压控灵敏度和线性范围都在增大。选取适当的Vr值和Cext值,将误差电压经线性变换后充当控制电压Vf,这样就可实现由误差电压控制VCO。当时,一组典型的实验数据为,,这时Vr在2.8V左右移动。2.3单片
11、集成双平衡模拟相乘器图3.8 ICVCO使用实例2.3 MC1496/MC1596(F1496/F1596、XD-5202)(a)电路说明MC1496/MC1596双平衡模拟相乘器习惯上又称为平衡调制 - 解调器,它是单片集成双平衡模拟相乘器中有代表性的产品之一。国内同类产品有F1496/F1596、XD-5202等,国外同类产品还有LM1496/LM1596、SG1496/SG1596等。MC1496是00C一700C民用温度范围产品,MCl596是-550C-+1250C军用温度范围产品。该产品具有极好的载波抑制能力(0.5MHZ时为一65dB;10MHZ时为-50dB)、高的共模抑制比(
12、-85dB),平衡输入、输出和方便的增益调整与信号处理等优点。其电路如图5-1所示,与改进的双平衡模拟相乘器相比较,电路是相同的,仅恒流源用晶体管Q7和Q8代替,二极管D与500电阻构成Q7、Q8的偏置电路。负载电阻接在、两端,反馈电阻RY接在、两端,起展宽输入信号的线性动态范围和调整电路增益的作用。(b)参数选择1载波电平Ux选择 因为载波抑制比与载波输入电平密切相关。小的载波电平不能完全打开上面的开关器件,结果信号增益较低,载波抑制亦较低。而高于最佳值的载波电平将产生不必要的器件和电路的载漏,同时也使戴波抑制特性恶化。测试表明,当载频为500KHZ时,用6OmV(rms)的正弦载波,可获得
13、最佳载波抑制。当载频为10MHZ时,最佳载波约为16Omv(rms)。图3.11 MC1496/MC1596电路图频率较高时,为了使载漏最小,电路的设计要注意。为防止载波输人和输出之间的电容耦合,必须采用屏蔽措施。实际应用时,还可以在、之间接人载波调零电位器。当MC1496/MC1596用于同频鉴相时,如图5一12所示。可把两个相同频率的高电平信号分别加到两个输入端,则输出电压是两个输入信号相位差的函数,起到了鉴相作用。2.4传输畸变和眼图数字信号经过非理想的传输系统必定产生畸变,为了衡量这种畸变的严重程序,一般都采用观察眼图的方式。眼图是示波器重复扫描所显示的波形,示波器的输入信号是解调后经
14、低通滤波器恢复的未经再生的基带信号,同步信号是位定时。这种波形示意图如图5-13示。图3.12 MC1496/MC1596图3.13 眼 图衡量眼图的几个重要参数有:(1)眼图开启度(U一2U)/U即最佳抽样点处眼图幅度的“张开”程度。无畸变眼图的开启度为100%。(2)“眼皮”厚度2U/U即最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应为0。(3)交叉点散度T/TS即眼图波形过零点交叉线的发散程度,无畸变眼图的交叉点发散为0。(4)正、负极性不对称度|(U1-U2)|/ |(U1+U2)|即最佳抽样点处眼图正、负幅度不对称的程度。无畸变眼图的极性不对称应为0。如果传
15、输信道不理想,产生传输畸变,就会很明显地由眼图的这几个参数反映出来。其后果可以看成有效信号的能量损失。可以推导出,等效信号信噪比的损失量Eb/N0与眼图开启度(U-2U)/U有如下关系:Eb/N0=20log|(U-2U)/U |(dB) 同样,交叉点发散度对信噪比损失的影响,也可以等效为眼图开启度对信噪比损失的影响,这里不再详述。2.5 位定时本实验没有位定时提取实验,位定时是由发端时钟从P12输入经延时在P16点产生。实际的DPSK解调位定时,必须由接收信号中提取。可参照FSK位定时提取方法。三、实验仪器实验箱 DPSK调制解调实验,华南理工大学电子与信息工程系 1套直流稳压电源 YB17
16、11A 1台双踪同步示波器 GOS-620 1台数字频率计 HC-F1000C 1台四、实验内容准备工作:1、按实验板上所标的电源电压开机,调准所需电压,然后关机;2、把实验板电源连接线接好;3、开机注意观察电流表正电流 I280mA 负电流 I60mA 若与上述电流差距太大,要迅速关机,检查电源线有无接错或其它原因。A.发送实验开关位置 K1接1.21测量载波P5振荡频率,观察记录P5波形、频率2. 测量位同步P1信号频率,观察记录P1波形、频率3. M序列发生器设初始状态为10000,试列表写出多项式,组成一个周期的M序列。把列表的结果与实验结果相比较。示波器用P2触发,观察并记录P2的波
17、形。以Pl比较,验证M序列的主要性质。4差分编码示波器示波器MODE(工作方式)置Chop(断续),观察并记录P3的波形,将P2和P3的波形进行比较,验证差分编码的规律。注意P3比P2有一位码时延。5数字调相电路示波器MODE置Chop,以P3为同步信号,观察并记录P6数字调相波形。验证差分编码的规律B接收实验1. 示波器A线接P7,B线接P8, 频率计输入线接P11,调整W5,使显示的频率与发端P5一致,即至锁定状态,当锁定时要继续按原方向调整,调整W5仔细体会锁定和失锁的工作状态。2.长时间未接通电时,可把K1接2.3,频率计接P11,调整W5把频率调至5MHz左右,把K1接1.2,即能进
18、入锁定状态。a) 锁定时观察P7、P8解调的基带信号。b) 失锁时观察P7、P8解调的基带信号。2 .锁定时观察P6发端的调制信号和P8解调的基带信号之间关系。3 眼图实验,A线接P8,B线接Pl6,示波器同步触发选B线,微调示波器水平扫描频率,观察眼图。4. 观察P11、P12两相干载波90相位差关系,即和之关系。5. A线接P8、B线接P13,观察记录过零检测波形。6. A线接P13,B线接Pl4,观察记录判决电路波形。7. A线接P14,B线接Pl5,观察记录差分译码结果,验证差分译码性质。8A线接P2,B线接Pl5,观察发端信码与收端解码应一致,并做记录。10同步带和捕捉带实验频率计接Pl1,示波器按3方法观察眼图,调节W5左旋使环路处
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论