期权期货复习_第1页
期权期货复习_第2页
期权期货复习_第3页
期权期货复习_第4页
期权期货复习_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、复习题 Explanation 名词解释 speculators wish to take a position in the market.Either they are betting that a price will go up or they are betting that it will go down. They use derivatives to get extra leverage Hedgers are interested in reducing a risk that they already face. Arbitrage involves locking in

2、a risk-less profit by entering simultaneously into transactions in two or more markets. A call option gives the holder the right to buy an asset by a certain date for a certain price. Put option: A put option gives the holder the right to sell an asset by a certain date for a certain price. Futures

3、( forward ) contract: It is an agreement to buy or sell an asset for a certain price at a certain time in the future. short selling: The investor brso ker borrows the shares from another client s account and sells them in the usual way. To close out the position the investor must purchase the shares

4、. The broker then replaces them in the account of the client from whom they were borrowed. In-the-money option/At the money/ Out out of the money Time value, intrinsic value, option value, risk-neutral valuation: Firstly, assume that the expected return from the stock price is the risk-free rate r,

5、then calculate the expected payoff from the option, at last, discounting the expected payoff at the risk-free rate Factors affecting stock option pricing: stock price, strike price, risk-free interest rate, volatility, time to maturity, and dividends. Long position of forward: A callable bond (可提前赎回

6、债券) : It contains provisions( 条款 ) that allow the issuing firm( 发 行公司 ) to buy back the bond at a predetermined price at certain times in the future. risk-neutral valuation: Firstly, assume that the expected return from the stock price is the risk-free rate r, then calculate the expected payoff from

7、 the option, at last, discounting the expected payoff at the risk-free rate Swaps : Swaps are private agreements between two companies to exchange cash flows in the future according to a prearranged formula. 新型期权的常见产品 Asian option, barrier option, lookback option, compound option, forward start opti

8、on, as you like option(choose option), convitable bond可( 转换债 券 Lookback options : the payoffs from lookback options depend on the maximum or minimum stock price reached during the life of the option Out option敲s出( 期权 ) : Option dies if stock price hits barrier before option maturity In optio敲ns入( 期权

9、 ) : A knock-in option ( 敲入期权 ) is an option that comes into existence only if the underlying asset price reaches a certain barrier before option maturity . Barrier options are options where the payoff depends on whether the underlying assets price reaches a certain level before option maturity. For

10、ward start options : are options that are paid for now but will start at some time in the future. The strike price is usually equal to the price of the asset at the time the option starts,ie, the option is at the money. Asian options : the payoffs from asian options depend on the averageprice of the

11、 underlying asset during at least some part ofthe life of the option. 价差组合期权 bottom vertical strangle: a bottom vertical strangle can be created by buy a put with lower strike prices and buy a call with higher strike prices. Bull spreads: A bull spread can be created using two call options with the

12、same maturity and different strike prices. The investor buys the call option with the lower strike price and shorts the call option with the higher strike price. Bull spreads can also be created by buying a put with a low strike price and selling a put with a high strike price. Bear spreads: A bear

13、spread can be created by selling a call with one lower strike price and buying a call with another higher strike price Butterfly spreads: A butterfly spread involves positions in options with three different strike prices: buying two call options with strike prices X1 and X3, and selling two call op

14、tions with a strike price X2, X1 X2 X3 2 .Explain the differences between forward contract and futures contract? FORWARDS Private contract between 2 parties Non-standard contract Usually 1 specified delivery date Settled at maturity Delivery or final cash settlement usually occurs FUTURES Exchange t

15、raded Standard contract Range of delivery dates Settled daily Contract usually closed out prior to maturity 3. 签订一份期货合约对 open interest(开放权益 )和 volum of trade (交易量)的影响 如果交易双方签订一个新合约, 那么未平仓合约数增加 1 个。如果交易双方就同一个合约进 行平仓, 那么未平仓合约数减少一个。 如果一方订立一个新合约, 而另一方同时将已有合约 平仓,那么未平仓合约数不变。交易量都是增加。 4 解:公司 A的比较优势在英镑而需要美元借

16、款,公司B 相反,因此存在互换的基础。英镑上 的利差为 0.4 ,美元上的利差为 0.8 ,因此互换的总获利为 0.4 。已知银行获利 0.1 , 则两个公司各获利 0.15 。因此 A实际上以 6.85 的利率借美元,而 B实际上以 10.45 的 利率借英镑。在银行承担所有市场风险的情况下,互换安排如下图: 美元 6.2 公司 A 银行 公司 B 英镑 11 英镑 11 英镑 10.45 美元 6.2 美元 6.85 1)互换收益的分配在公司 A 、公司 B 和银行间的比例分别为 35%、35%、30% 。如何设计 ? 2)若分配比例为 50%、25% 、 25%,如何设计 ? 公司 A

17、英镑 11 美元 6.8 美元 6.2 公司 B 银行 英镑 11 英镑 10.5 6.2 5. 6 基于同一股票的看跌期权有相同的到期日.执行价格为 $70、$65 和 $60,市场价格分为 $5、 $3 和 $2. 如何构造蝶式差价期权 .请用一个表格说明这种策略带来的盈利性 .股票价格在什么 范围时,蝶式差价期权将导致损失? 7 基于同一股票的有相同的到期日敲定价为 $70 的看涨期权价格为 $4. 敲定价 $65 的看涨期权的价格为 $6。解释如何构造 bull/bear spread option.请用一个表 格说明这种策略带来的盈利性 .股票价格在什么范围时,价差期权将导致损失?

18、8. Oil: An Arbitrage Opportunity? Suppose that: - The spot price of gold is US$95 - The quoted 1-year futures price of gold is US$125 - The 1-year US$ interest rate is 5% per annum Is there an arbitrage opportunity ? Suppose that: - The spot price of gold is US$95 - The quoted 1-year futures price o

19、f gold is US$80 - The 1-year US$ interest rate is 5% per annum Is there an arbitrage opportunity? 8 远期 /期货价格公式及其价值公式 F Ser(T t) (S I)er(T t) Se(r q)(T t) B-S 公式的使用 c Se q(T t)N(d1) Xe r(T t)N(d2) p Xe r(T t)N( d2) Se q(T t)N( d1) d1 ln(S/ X) (r q 2/2)(T t) d2 d1T t 1 T t 2 1 1) .What is the price of

20、 a European call option on a non-dividend-paying stock when the stock price is $69, the strike price is $70, the risk-free interest rate is 5% per annum, the volatility is 35% per annum, and the time to maturity is six months? 2) . Suppose the current value of the index is 500, continuous dividend y

21、ields of index is 4% per annum, the risk-free interest rate is6% per annum . if the price of three-month European index call option withexercise price 490is $20, What is the price of a three-month European index put option with exercise price 490? by put-call parity 3) What is the price of a Europea

22、n futures put option :current futures price is $19, the strike price is $20, the risk-free interest rate is 12% per annum, the volatility is 20% per annum, and the time to maturity is five months?(保留 2 位小数) Solution: In this case F=19,X=20, r=0.12, =0.20, T-t=0.42, 2 d1 ln(F /X) ( 2/2)(T t) 0.33 Tt

23、d2 d1 0.2 0.4167 0.46 N (0.33) 0.6293, N (0.46) 0.6772 N( d1) N (0.33) 0.6293, N ( d2) N (0.46) 0.6772 The price of the European put is p Xe r(T t) N( d2) Fe r(T t)N( d1) 20e 0.12 0.42 0.6772 19 0.6293e 0.12 0.42 1.51 4) A one-year-long forward contract on a non-dividend-paying stock is entered into

24、 when the stock price is $40 and the risk-free rate of interest is 10% per annum with continuous compounding. (a) What are the forward price and the initial value of the forward contract? (b) Six months later, the price of the stock is $45 and the risk-free interest rate is still 10%. What are the f

25、orward price and the value of the forward contract? The forward price, F Ser(T t) 40e0.1 44.21 , The initial value of the forward contract is zero. f 0 (a) The delivery price K in the contract is $44.21. The value of the forward contract after six months is given: f S Ke r (T t) 45 44.21e 0.1 0.5 2.

26、95 The forward price, F Ser(T t) 45e0.1 0.5 47.31 5) 计算基于无红利支付股票的欧式看跌期权价格, 其中执行价格为 50,现价为 50,有效 期 3 个月期,无风险年收益率为 10%,波动率为每年 30%。 若在两个月后预期支付的红利为 1.50 ,则计算会有何变化 解 S0 50,X 50,r 0.1, 0.3,T 0.25 d1 ln(50 /50) (0.1 0.09/ 2)0.25 0.2417 0.3 0.25 d2 d1 0.3 0.25 0.0917 欧式看跌期权价格是 50N( 0.0.0917)e 0.1 0.25 50N(

27、0.2417) 50 0.4634e 0.1 0.25 50 0.4045 2.37 若在两个月后预期支付的红利为1.50 ,在本题中我们在使用 BS公式前必须从股票价格中 减去红利的贴现值, 因此 S0 应该是 S0 50 0.1667 0.1 1.50e 48.52 其他变量不变 X 50,r 0.1, 0.3,T 0.25 在本题中 d1 ln(48.52 /50) (0.1 0.09/ 2)0.25 0.3 0.25 0.0414 d2 d1 0.3 0.25 0.1086 欧式看跌期权价格是 50N( 0.1086)e 0.1 0.25 48.52N( 0.0414) 52,执行价格

28、为 50,无 50 0.5432e 0.1 0.25 48.52 0.4045 3.03 6) 求无红利支付股票的欧式看涨期权的价格。其中股票价格为 风险年收益率为 12%,年波动率为 30%,到期日为 3 个月。 在本题中 S0 52,X 50,r 0.12, 0.30,T 0.25 d1 ln(52 50) (0.12 0.32 / 2)0.25 0.5365 0.5365 0.30 0.25 d2 d1 0.30 0.25 0.3865 欧式看涨期权的价格是 52N (0.5365) 50e 0.03 0.6504 5.06 无风 7) 求无红利支付股票的欧式看跌期权的价格。 其中股票价

29、格为 69,执行价格为 70, 险年收益率为 5%,年波动率为 35%,到期日为 6 个月。 在本题中 S0 69, X 70,r 0.05, 0.35,T 0.5 d ln(69 / 70) (0.05 0.352 /2) 0.5 0.1666 d10.1666 1 0.35 0.5 d2 d1 0.35 0.5 0.0809 欧式看跌期权价格为 70e 0.05 0.5N (0.0809) 69N( 0.1666) 70e 0.025 0.5323 69 0.4338 6.40 9. 试证明标的资产无红利发放时的欧式看涨期权和看跌期权满足的平价公式 c Ke r (T t) p S 10.

30、 试证明标的资产有红利发放时的欧式看涨期权和看跌期权满足的平价公式 c Ke r (T t) D p S 11. 1)证明在风险中性环境下,到期的欧式看涨期权被执行的概率为N(d2 ), 2) 使用风险中性定价原理, 假设股票 1 的价格和股票 2 的价格分别服从几何布朗运动, 独立,给到期损益为如下形式的欧式衍生品定价: T: fT K S1T X1,ST 2 X2 0 else Solution: Since ln ST N ln S (r2 /2() T t), 2(T t) p(ST X) p(lnST ln X) 1 p(ln ST ln X) 1 N(lnX ln S (r2 /2

31、)(T t) T t ) ln X ln S (r 2 /2)(T t) N( T t ) N(d2) K S1T X1,ST2 X2 Since T : fT and p(ST X) N(d 2) 0 else E fT K P(S1T X1,ST X22) 1 KP( ST1 2 X1) *P(ST2 X2) KN(d 21)* N(d22) fe r (T t) EfT e r (T t) KN(d21)* N(d22) Where 12 ln(S1 / X1) (r12 /2)(T t) ,d22 1 T t 22 ln(S2 / X2) (r22 / 2)(T t) 2 T t 12

32、. Use two-step tree to value an American 2-year put option on a non-dividend-paying stock, current stock price is 50, the strike price is $52, and the volatility of stock price is 30% per annum, the risk-free interest rate is 5% per annum. (保留 2 位小数) In this case, S=50, X = 52, = 0.3, t=1, r=0.05 ,

33、the parameters necessary to construct the tree are 0.05*1 t 1 0.05*1 e d u e t 1.35, d 0.74, e0.05*1=1.10 p 0.51, 1 p 0.49 u u d fi,j max X Sujdi j, e r tpfi 1.j 1 (1 p)fi 1.j 13 If a stock price, S, follows geometric Brownian motion dS Sdt SdWt 1) What is the process followed by the variable Sn ? S

34、how that Sn also follows geometric Brownian motion. 2) The expected value of ST is E(ST ) Se (T t) . What is the expected value of n ST n ? 3) The varaince of ST is D(ST) S2e (T t)(e (T t) 1) . What is the variance of STn 4) Using risk-neutral valuation to value the derivative, whose payoff at matur

35、ity is T: fT STn 1)We now use Itos lemma to derive the process followed by Sn nSn 1 Define G Sn , dS Sdt SdWt G G 1 2G 2 dG dt dS 2 (dS)2 t S 2 S2 nSn 1( Sdt SdWt) 1 n(n 1)Sn 2( Sdt 2 G S 2G S2 n(n 1)Sn 2 G t 0 n n 1 2 n n Sndt n SndWtn(n 1) 2Sndt SdWt )2 n 1 2 n n n Snn(n 1) 2Sn dt n SndWt 1 2 n n

36、dG n n(n 1) 2Sndt n SndWt 12 n n(n 1) 2 Gdt n GdWt G Sn So that Sn also follows geometric Brownian motion. 2) since dS SdtSdWt E(ST ) Se (T t) dG n 1n(n 1) 2Gdt n GdWt 12 n n(n 1) 2 (T t) E(GT )Ge 2 12 n 2n(n 1) 2 (T t) G Sn , E(ST n) Sne 3) Since dS Sdt SdWt and varaince of ST is 22 D(ST) S2e 2(T t

37、)(e 2(T t) 1). Similarly, by dG n 12n(n 2 1) 2Gdt n GdWt We get the varaince of ST n is D(STn) D(GT ) G2e2n n(n 1) 2(T t)en2 2 (T t) 1 (Sn ) 2e2n n(n 1) 2(T t)en2 2(T t) 1 14 In a risk-neutral world, suppose stock prices follow geometric Brownian motion dS rSdt SdW, 1) What is the process followed by the variable Sn by Ito s lemma?S how that Sn also follows geometric Brownian motion. 2) The expected value of ST is E(ST ) Ser(T t) . What is the expected value of ST n ? 4) Using risk-neutral valuation to value the derivative, whose payo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论