版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-作者xxxx-日期xxxx值域经典题型【精品文档】值域简单练习题1. 求在上的值域 2. 求函数的值域 3. 求函数的值域 4. 求函数的值域 5.6.7.8.9.10.11.12.13.求函数的值域。值域的求法加强练习题解答题(共10小题)1已知函数的定义域为集合A,函数的值域为集合B,求AB和(CRA)(CRB)2已知函数f(x)=x2bx+3,且f(0)=f(4)(1)求函数y=f(x)的零点,写出满足条件f(x)0的x的集合;(2)求函数y=f(x)在区间(0,3上的值域3求函数的值域:4求下列函数的值域:(1)y=3x2x+2; (2); (3);(4); (5) (6);5求下列
2、函数的值域(1); (2); (3)x0,3且x1;(4)6求函数的值域:y=|x1|+|x+4|7求下列函数的值域(1)y=x2+x+2; (2)y=32x,x2,9;(3)y=x22x3,x(1,2;(4)y=8已知函数f(x)=22x+2x+1+3,求f(x)的值域9已知f(x)的值域为,求y=的值域10设的值域为1,4,求a、b的值参考答案与试题解析一解答题(共10小题)1已知函数的定义域为集合A,函数的值域为集合B,求AB和(CRA)(CRB)考点:函数的值域;交、并、补集的混合运算;函数的定义域及其求法。1457182专题:计算题。分析:由可求A,由可求B可求解答:解:由题意可得A
3、=2,+),B=(1,+),CRA=(,2),CRB=(,1(4分)AB=2,+)(CRA)(CRB)=(,1(6分)点评:本题主要考查了函数的定义域及指数函数的值域的求解,集合的交集、补集的基本运算,属于基础试题2已知函数f(x)=x2bx+3,且f(0)=f(4)(1)求函数y=f(x)的零点,写出满足条件f(x)0的x的集合;(2)求函数y=f(x)在区间(0,3上的值域考点:函数的值域;二次函数的性质;一元二次不等式的解法。1457182专题:计算题。分析:(1)从f(0)=f(4)可得函数图象关于直线x=2对称,用公式可以求出b=4,代入函数表达式,解一元二次不等式即可求出满足条件f
4、(x)0的x的集合;(2)在(1)的基础上,利用函数的单调性可以得出函数在区间(0,3上的最值,从而可得函数在(0,3上的值域解答:解:(1)因为f(0)=f(4),所以图象的对称轴为x=2,b=4,函数表达式为f(x)=x24x+3,解f(x)=0,得x1=1,x2=3,因此函数的零点为:1和3满足条件f(x)0的x的集合为(1,3)(2)f(x)=(x2)21,在区间(0,2)上为增函数,在区间(2,3)上为减函数所以函数在x=2时,有最小值为1,最大值小于f(0)=3因而函数在区间(0,3上的值域的为1,3)点评:本题主要考查二次函数解析式中系数与对称轴的关系、二次函数的单调性与值域问题
5、,属于中档题只要掌握了对称轴公式,利用函数的图象即可得出正确答案3求函数的值域:考点:函数的值域。1457182专题:计算题;转化思想;判别式法。分析:由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程(y2)x2+(y+1)x+y2=0有实数解,因此“求f(x)的值域”这一问题可转化为“已知关于x的方程(y2)x2+(y+1)x+y2=0有实数解,求y的取值范围”解答:解:判别式法:x2+x+10恒成立,函数的定义域为R由得:(y2)x2+(y+1)x+y2=0当y2=0即y=2时,即3x+0=0,x=0R当y20即y2时,xR时方程(y2)x2+(y+1)x+y2=0恒
6、有实根,=(y+1)24(y2)20,1y5且y2,原函数的值域为1,5点评:判别式法:把x作为未知量,y看作常量,将原式化成关于x的一元二次方程形式,令这个方程有实数解,然后对二次项系数是否为零加以讨论:(1)当二次项系数为0时,将对应的y值代入方程中进行检验以判断y的这个取值是否符合x有实数解的要求(2)当二次项系数不为0时,利用“xR,0”求解,此时直接用判别式法是否有可能产生增根,关键在于对这个方程去分母这一步是不是同解变形4求下列函数的值域:(1)y=3x2x+2;(2);(3);(4);(5)(6)考点:函数的值域。1457182专题:常规题型。分析:(1)(配方法)y=3x2x+
7、2=3(x)2+(2)看作是复合函数先设=x26x5(0),则原函数可化为y=,再配方法求得的范围,可得的范围(3)可用分离变量法:将函数变形,y=3+,再利用反比例函数求解(4)用换元法设t=0,则x=1t2,原函数可化为y=1t2+4t,再用配方法求解(5)由1x201x1,可用三角换元法:设x=cos,0,将函数转化为y=cos+sin=sin(+)用三角函数求解(6)由x2+x+10恒成立,即函数的定义域为R,用判别式法,将函数转化为二次方程(y2)x2+(y+1)x+y2=0有根求解解答:解:(1)(配方法)y=3x2x+2=3(x)2+,y=3x2x+2的值域为,+)(2)求复合函
8、数的值域:设=x26x5(0),则原函数可化为y=又=x26x5=(x+3)2+44,04,故0,2,y=的值域为0,2(3)分离变量法:y=3+,0,3+3,函数y=的值域为yR|y3(4)换元法(代数换元法):设t=0,则x=1t2,原函数可化为y=1t2+4t=(t2)2+5(t0),y5,原函数值域为(,5注:总结y=ax+b+型值域,变形:y=ax2+b+或y=ax2+b+(5)三角换元法:1x201x1,设x=cos,0,则y=cos+sin=sin(+)0,+,sin(+),1,sin(+)1,原函数的值域为1,(6)判别式法:x2+x+10恒成立,函数的定义域为R由y=得:(y
9、2)x2+(y+1)x+y2=0当y2=0即y=2时,即3x+0=0,x=0R当y20即y2时,xR时方程(y2)x2+(y+1)x+y2=0恒有实根,=(y+1)24(y2)20,1y5且y2,原函数的值域为1,5点评:本题主要考查求函数值域的一些常用的方法配方法,分离变量法,三角换元法,代数换元法,判别式法5求下列函数的值域(1);(2);(3)x0,3且x1;(4)考点:函数的值域。1457182分析:(1)把函数转化成关于tanx的函数,进而求值域(2)令因为1x20,即1x1,故可x=sinx,把函数转化成三角函数,利用三角函数的性质求函数的最值(3)把原式变成2+,设t=,通过幂函
10、数t的图象即可求出t的值域,进而求出函数y=的值域(4)令t=x4,即x=t+4代入原函数得出y关于t的函数,进而求出答案解答:解:(1)=1+4tanx+4=5+4tan2x2+59函数的值域为9,+)(2)令x=sin,=sincos=sin(),sin()1,的值域为,1(3)y=2+令t=,则其函数图象如下如图可知函数在区间0,1)单调减,在区间(1,3单调增t(,63,+)y(,45,+)即函数y=的值域为(,45,+)(4)设t=x4,x=4+t则=|+2|2|t=x400y=y0,4即函数的值域为0,4点评:本题主要考查求函数的值域问题此类题常用换元、配方、数形结合等方法6求函数
11、的值域:y=|x1|+|x+4|考点:函数的值域。1457182专题:计算题;分类讨论。分析:由函数表达式知,y0,无最大值,去掉绝对值,把函数写成分段函数的形式,在每一段上依据单调性求出函数的值域,取并集得函数的值域解答:解:数形结合法:y=|x1|+|x+4|=y5,函数值域为5,+)点评:本题体现数形结合和分类讨论的数学思想方法7求下列函数的值域(1)y=x2+x+2;(2)y=32x,x2,9;(3)y=x22x3,x(1,2;(4)y=考点:函数的值域。1457182专题:计算题。分析:(1)求二次函数y=x2+x+2的值域可先求最值,由最值结合图象,写出值域(2)求一次函数y=32
12、x在闭区间上的值域,要先求最值,由最值写出值域(3)求二次函数y=x22x3在某一区间上的值域,要结合图象,求出最值,再写出值域(4)求分段函数y的值域,要在每一段上求出值域,再取其并集,得出分段函数的值域解答:解:(1)二次函数y=x2+x+2;其图象开口向下,对称轴x=,当x=时y有最大值;故函数y的值域为:(,);(2)一次函数y=32x,x2,9;单调递减,在x=2时,y有最大值7;在x=9时,y有最小值15;故函数y的值域为:15,7;(3)二次函数y=x22x3,x(1,2;图象开口向上,对称轴x=1,当x=1时,函数y有最小值4;当x=1时,y有最大值0;所以函数y的值域为:4,
13、0);(4)分段函数y=;当x6时,y=x104;当2x6时,y=82x,4y12;所以函数y的值域为:4,+)(4,12=4,+)点评:本组4个题目求函数的值域,都是在其定义域上先求其最值,根据最值,直接写出其值域;它们都是基础题8已知函数f(x)=22x+2x+1+3,求f(x)的值域考点:函数的值域。1457182分析:注意利用22x=(2x)2这个式子,很容易把这个看似不识的函数转化为我们再熟悉不过的二次函数解答:解:令t=2x,则t0,f(x)=(2x)2+22x+3=t2+2t+3,令g(t)=t2+2t+3(t0),则g(t)在1,+)上单调递增,故f(x)=g(t)g(0)=3,故f(x)的值域为(3,+)点评:二次函数求最值是我们再熟悉不过的函数了,问题的关键是能否把我们不熟悉的函数转化为我们熟悉的二次函数而且采用换元法转化函数的时候,一定要注意换元后变量的范围9已知f(x)的值域为,求y=的值域考点:函数的值域。1457182专题:计算题。分析:根据f(x)的值域,应用不等式的性质先求出被开方数的取值范围,进而求得y的值域解答:解;f(x),2f(x),12f(x)yy的值域为:,点评:本题考查不等式的性质10设的值域为1,4,求a、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度区块链技术应用合同范本6篇
- 2024乙方承担甲方固体废弃物处理项目的合同
- 2024年度建设合同:城市道路建设项目2篇
- 2024年度口腔诊所数据库建设与维护合同
- 2024年度版权转让合同范例3篇
- 2024年全面物流服务合作协议模板汇编
- 2024年度体育场馆赞助与租赁合同3篇
- 铁路桥梁工程施工招标合同三篇
- 2024专项检测与认证服务协议一
- 电子支付设备租赁协议三篇
- 灌肠法的并发症及处理
- 廉洁一对一谈心谈话记录
- 现代功过格-打印版
- 5G优化案例:5G-NR-低RANK值分析研究案例
- 妇幼保健院新生儿科运用PDCA降低新生儿科患儿入院后臀红率品管圈成果汇报书
- 个人政治生日感言
- Linux操作系统应用(麒麟系统)PPT完整全套教学课件
- 高一职教英语作文范文(汇总17篇)
- 产学合作协同育人实践条件和实践基地建设项目申报书-校企协同共建以应用驱动为导向的校外实践基地
- 综采区各工种岗位描述汇编
- 正说藏传佛教课件
评论
0/150
提交评论