高中数学 第二章 统计章末复习提升课件 新人教A版必修3_第1页
高中数学 第二章 统计章末复习提升课件 新人教A版必修3_第2页
高中数学 第二章 统计章末复习提升课件 新人教A版必修3_第3页
高中数学 第二章 统计章末复习提升课件 新人教A版必修3_第4页
高中数学 第二章 统计章末复习提升课件 新人教A版必修3_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章统 计章末复习提升知识网络 系统盘点知识梳理 自主学习题型探究 重点突破栏目索引 知识网络 系统盘点返回 知识梳理 自主学习1.关于抽样方法(1)用随机数法抽样时,对个体所编号码位数要相同,当问题所给位数不同时,以位数较多的为准,在位数较少的数前面添“0”,凑齐位数.(2)用系统抽样法时,如果总体容量N能被样本容量n整除,抽样间隔为k ;如果总体容量N不能被样本容量n整除,先用简单随机抽样剔除多余个体,抽样间隔为k (其中KN多余个体数).(3)三种抽样方法的异同点类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相同从总体中逐个抽取 总体中的个体数较少系统抽

2、样将总体平均分成几部分,按事先确定的规则分别在各部分中抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2.关于用样本估计总体(1)用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.(2)茎叶图刻画数据有两个优点:一是所有信息都可以从图中得到;二是茎叶图中的数据可以随时记录,随时添加,便于记录和表示.(3)平均数反映了样本数据的平均水平,而标准差反映了样本数据的波动程度.3.变量间的相关关系(1)除了函数关系这

3、种确定性的关系外,还大量存在因变量的取值带有一定随机性的两个变量之间的关系相关关系,对于一元线性相关关系,通过建立回归方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解,主要是作出散点图,写出回归方程.(2)求回归方程的步骤:返回 题型探究 重点突破题型一抽样方法的运用1.抽样方法有:简单随机抽样、系统抽样、分层抽样.2.三种抽样方法比较例1(1)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6 B.8 C.10 D.12解析分层抽样的原理

4、是按照各部分所占的比例抽取样本.设从高二年级抽取的学生数为n,B解析答案(2)问题:某小区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了了解有关家用轿车购买力的某个指标,要从中抽取一个容量为100的样本;从10名学生中抽取3人参加座谈会.方法:(1)简单随机抽样;(2)系统抽样;(3)分层抽样.则问题与方法配对正确的是()A.(1),(2) B.(3),(2)C.(2),(3) D.(3),(1)解析问题中的总体是由差异明显的几部分组成的,故可采用分层抽样方法;问题中总体的个数较少,故可采用简单随机抽样.故匹配正确的是D.D解析答案跟踪训练1某单位有84

5、0名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为()A.11 B.12 C.13 D.14解析抽样间隔为 20.设在1,2,20中抽取号码x0(x01,20).在481,720之间抽取的号码记为20kx0,则48120kx0720,kN*.所以k的值共有3524112(个),即所求人数为12.B解析答案题型二用样本的频率分布估计总体分布此类问题通常要对样本数据进行列表、作图处理.这类问题采取的图表主要有:条形图、直方图、茎叶图、频率分布折线图、扇形图等.它们的主要优点是直观,能够清楚表示总体的分布走势.除

6、茎叶图外,其他几种图表法的缺点是原始数据信息有丢失.例2如图所示的是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为123,第2小组的频数为10,则抽取的学生人数为()A.20 B.30 C.40 D.50解析答案解析前3组的频率之和等于1(0.012 50.037 5)50.75,第2小组的频率是0.75 0.25,设样本容量为n,则 0.25,则n40.故选C.答案C跟踪训练2某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整

7、理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?解(1)如题图所示,用水量在0.5,3)的频率的和为:(0.20.30.40.50.3)0.50.85.用水量小于等于3立方米的频率为0.85,又w为整数,为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.解析答案(2)假设同组中的每个数据用该组区间的右端点值代替,当w3时,估计该市居民该月的人均水费解 当w3时,该市居民该月的人均水费估计为:(0.110.151.50.220.252.50.153)40.15340.05(3.53)0.05(43)

8、0.05(4.53)107.21.81.510.5(元)即该市居民该月的人均水费估计为10.5元解析答案题型三用样本的数字特征估计总体的数字特征为了从整体上更好地把握总体的规律,我们还可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体相应的数字特征作出估计众数就是样本数据中出现次数最多的那个值;中位数就是把样本数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,中位数为处于中间位置的数,如果数据的个数是偶数,中位数为中间两个数据的平均数;平均数就是所有样本数据的平均值,用 表示;标准差是反映样本数据分散程度大小的最常用统计量,其计算公式是有时也用标准差的平方(s2方差)

9、来代替标准差.例3(1)若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是(单位:分)()A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92解析将这组数据从小到大排列,得87,89,90,91,92,93,94,96(单位:分).A解析答案(2)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()分数54321人数2010303010B解析答案跟踪训练3为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图

10、如图.(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);解设甲校高三年级学生总人数为n.样本中甲校高三年级学生数学成绩不及格的人数为5,解析答案(75)(55814)(241265)(262479)(2220)92249537729215.解析答案题型四变量间的相关关系1.分析两个变量间的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘法求出回归方程.把样本数据表示的点在直角坐标系中作出,构成的图叫做散点图.从散点图上,我们可以分析出两个变量是否存在相关关系

11、.如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,直线方程叫做回归方程.2.回归方程的应用利用回归方程可以对总体进行预测,虽然得到的结果不是准确值,但我们是根据统计规律得到的,因而所得结果的正确率是最大的,所以可以大胆地利用回归方程进行预测.例4某地连续十年粮食需求量逐年上升,下表是部分统计数据:年份20062008201020122014需求量(万吨)236246257276286解析答案解由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归方程.为此对数据预处理如下:年份201042024需求量25721110192

12、9解析答案由上述计算结果,知所求回归方程为(2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解利用直线方程,可预测2016年的粮食需求量为6.5(2 0162 010)260.26.56260.2299.2(万吨)299(万吨).解析答案跟踪训练4理论预测某城市2020到2024年人口总数与年份的关系如下表所示:年份202x(年)01234人口数y(十万)5781119(1)请画出上表数据的散点图;解数据的散点图如图:解析答案(2)指出x与y是否线性相关;解由散点图可知,样本点基本上分布在一条直线附近,故x与y呈线性相关.解析答案解析答案(4)据此估计2025年该城市人口总数.

13、(参数数据:051728311419132,021222324230)故2025年该城市人口总数约为196万.解析答案题型五数形结合思想名称数形结合频率分布直方图数据分组及频数:40,50),2;50,60),3;60,70),10;70,80),15;80,90),12;90,100,8可求众数:最高矩形的中点所对应的横坐标;可求中位数:中位数左边和右边的直方图面积相等;可求平均数:每个矩形的面积乘以矩形底边中点的横坐标之和;可求落在各个区域内的频率名称数形结合总体密度曲线同上可精确地反映一个总体在各个区域内取值的百分比,如分数落在(a,b)内的百分比是左图中阴影部分的面积名称数形结合茎叶图

14、甲的数据:95,81,75,89,71,65,76,88,94;乙的数据:83,86,93,99,88,103,98,114,98茎是十位和百位数字,叶是个位数字;可以帮助分析样本数据的大致频率分布;可用来求数据的一些数字特征,如中位数、众数等散点图n个数据点(xi,yi)可以判断两个变量之间有无相关关系例5甲、乙两人在相同的条件下各射靶10次, 每次射靶成绩(单位:环)如下图所示.(1)填写下表:平均数方差中位数命中9环及以上甲71.21乙5.43解析答案解乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10.乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9,所以中位数为7.于是填充后的表格如下表所示:平均数方差中位数命中9环及以上甲71.271乙75.47.53

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论