版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。 编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。本文是对话的第一部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面请“聆听”并学习。 David: 有一种观念认为,当我们做旁路设计时,我们对低频成分要采用大电容(微法
2、级),而对高频成分要采用小电容(纳法或皮法级)。 Tamara: 我赞成,那有什么错吗? David: 那听起来很好并且是有意义的,但是,问题在于当我在实验室中验证那个规则时并未得到我们想要的结果!我要向您发出挑战,Tamara博士。 Tamara: 好啊!我无所畏惧。 David: 让我们看看,你有一个电压调整器并且它需要电源。电源线具有一些串联阻抗(通常是电感以及电阻),这样对于短路来说,它在瞬间提供的电流就不会出现大变化。它需要有一个局部电容供电,如图1所示。 图1:旁路电容的功能。Tamara: 我到目前均赞成你的观点。那就是旁路的定义。Dave,接着说吧。 David: 例如,有些人
3、可能用0.1 F电容进行旁路。他们也可能用一个1000pF的电容紧挨着它以处理更高的频率。如果我们已经采用了一个0.1 F的电容,那么,紧挨着它加一个1000pF电容就没有意义。它会增加1%的容值,谁会在意? Tamara: 然而,除了电容值之外,有更多要研究的内容。这两种数值的电容均不理想。 David: 我们必须考察0.1 F的实际电路;它存在有效串联电阻(ESR)以及有效串联电感(ESL)。 Tamara: 有时候,你还要把介质损耗一项当成一个并联电阻来考虑,如图2所示。 图2:旁路电容的模型。David: 现在,当我们遇到具有瞬态特性的这一损耗时,我们假设0.1 F电容的ESL远远大约
4、1000pF的电容。我们需要某一器件在短期内供电,因ESL的存在而让0.1 F的电容做不到这一点。假设就在于1000pF的电容具有更低的ESL,因此,能够提供更好的电流。 Tamara: ESL与你获得以及封装的电容的类型有关。其数值可能完全独立于电容本身的尺寸和数值,如图3所示。 David: (显示出对年轻同事所具有的知识的惊讶) Tamara: 我曾经看到过一些人把100 nF、10 nF和1 nF的电容分级并联起来使用,它们可能均采用相同的封装,例如0402,因为这些电容通常就是采用这种封装形式。然而,每一种0402封装均具有相同的ESL,因为它们具有相同的电感以及相同的高频响应,因此
5、,这么安装电容于事无补。 图3:旁路电容的阻抗。David: 我们在实验室中所发现的问题在于,各种封装均是类似的。我们所采用的大多数陶瓷电容均为面积是0805或0603的电容。我测试发现,把0603 0.1 F电容挨着0603 100pF电容安装,效果上不如仅仅采用两个0603 0.1 F的电容。Tamara: 那是完全有可能。我猜测,你所处的频率范围就是0603 0.1 F电容被最优化的频率范围。 图4:相同尺寸和不同尺寸的电容的阻抗比较。David: 是的,ESR和ESL是原数值的一半且非常管用。在这些应用中,我所研制的开关调整器的工作频率大约为1MHz。 Tamara: 在你的情况下,要
6、调整电容的数值以及封装,以改善对你没有兴趣的那个频率范围的旁路网络。图4假设我们谈论的是相同类型的电容(陶瓷电容)。其它类型的电容如钽电容具有更高的ESR,因此,整个曲线突起。另一方面,有时可能全部要采用钽电容。 David: 我们现在讲讲历史。过去,人们采用他们手上能用的一切元器件。那时,你无法获得封装小的100 F电容,你不得不通过缩短旁路电容器上的引线来改善旁路网络。当今的大电容的尺寸正逐渐缩小类似于较小电容所具有的尺寸。当你开始认真考虑选择一只0.1 F电容时,你肯定选择0603的封装,并且,最终会选择0402封装的电容(因为我没有看过0402封装的电容,我倾向于不采用那些电容)。 T
7、amara: 按照分级封装的阶梯电容(stepped capacitor)的确切含义来自于赛灵思公司的讨论。他们的FPGA被用于各种各样的应用之中,并且,他们设法测试了所有的条件。因此,他们在高达5Gsps的宽频带内需要一种低阻抗电容对电源旁路。另一方面,你需要一种较低带宽的解决方案。 David: 我的评论全部来自较之于比赛灵思的速度更低的电源应用。你的辩论非常聪明,因为你指的是封装尺寸,而其他人没有那么深入的思考。他们通常所,高频需要小电容,而低频需要大电容。 Tamara: 啊,真是的,我要脸红了。 David: 我的旁路事业一直是非常令人厌烦的,因为在大多数时间内,规则就是用0.1 F
8、电容旁路每一个芯片,那就管用了。 Tamara: 那不仅仅与封装有关,而且还与布局有关。 David: 绝对正确!我循着电路板上的电流路线,发现电路板上存在电感。在任何电流路径上的电感与该路径的闭环面积呈正比。因此,当你围绕一个区域对元器件进行布局时,你需要把元器件紧凑地布局。那就是你为什么把元器件保持紧凑布局的原因保持电感为低。然后,选择具有良好ESL和ESR的电容。我希望对于它有更多的设计艺术,但是,它的确是实用证明正确的少数的简单规则之一。 Tamara: 当然,你可以购买具有较低ESL和ESR的电容,但是,他们通常比标准的陶瓷电容更为昂贵。 David: 在大多数情形下,与每一块芯片尽
9、可能接近的0.1 F旁路电容仍然非常管用。Tamara: 我们上次关于旁路电容的对话很好,但是,我认为这个话题没有结束。我们假设电容的低边有一块完美的接地层可用。然而,在一半的情况下,这并不是有效的假设。 David: 我听您说,博士。那天一位同事向我展示了他的最新的板子。“我用的是四层板,完整的接地层,”他真诚地说,“没有问题呀。”我没有把握他说的是否正确。 Tamara: 是的,接地层大有帮助,如果你使用正确的话。 David: 正如我们所说的,旁路电容应该尽可能近地放在电源的旁边。我们假设读者知道把电容的另一边连接至良好的接地层。 Tamara: 可是,让我们确切一点说。你说的“良好的接
10、地”或“良好的接地层”是什么意思? David: 啊,接地应该是0V。 Tamara: 然而,它真是真正的零伏吗? David: 不,当然不是。总是存在一些阻抗,总是存在一些引起电压降的电流。 Tamara: 因此,在一点的地电压永远不会跟另一点一样。 David: 有时候,当我们研究隔离问题时,我们可以假设局部接地层的电压是相对一致的。另一方面,有些应用处于高频环境中,例如,接近发射器或微波炉。这些设备有大量的信号耦合进它们的接地层之中。 Tamara: 那么,我们如何构建一块“良好的接地层”呢?我们的读者应该仅仅采用接地层吗? David: 有时候答案是肯定的。 Tamara: 然而,在接
11、地层上时常存在足够大的电流,从而引起从一点至另一点之间出现巨大的电压降。 David: 因此,问题在于,你如何在一个系统中把每一个电路接地以最优化性能? Tamara: 那取决于电路的类型。 David: 是的,你可能在一个系统中要采用多种接地方案。 Tamara: 当然,所有的地最终都要接在同一个地方。 David: 是的,然而,我们要把每一块接地层直接连接至一个地方吗? Tamara: 我们可以这么做,而那被称为星型接地(这是一种非常流行的接地方式,如果使用正确,是一种成功的接地方式)。David: 对于小的电路我们已经采用了那种技术,但是,对于较大的电路我们还需要研究。 Tamara:
12、当你设计大面积的电路时,问题更为严峻。你不能让一个有用的旁路电容距离元件0.5英寸开外连接。总的引线电感将让电容的性能退化。 David: 我喜欢把接地看成是一种局部现象。跟随通过围绕一颗芯片(例如)的小的局部环路的电源和输入电流,并保持那个环路尽可能小和紧凑。来自局部电路的各个接地层然后连接至较大的接地系统,这一接地系统要根据较大等级的电流进行设计。 Tamara: 你可以举一个例子吗? David: 当然,(例1)我们正在构建一个两输入的视频示波器(称为“波形监视器”)。如图1所示为前端的简化电路图。 图1:两通道可选前端电路图。Tamara: 那是几个馈入2:1复用器的视频放大器,在输出
13、端上有一个缓冲放大器,对吗? David: 非常正确。我们设计了一块像这样的板子(图2)。 图2:两通道可选前端的布局。David: 这是一块四层电路板,尽管有两层用得很少(浅蓝和深蓝)。红色是顶层,最后一层是接地层。 Tamara: 设计和布局看起来非常简单和干净。 David: 然而,在各个输入之间存在太多的耦合。(即使当输入B被关闭时,它示出输入A的衰减版)。 Tamara: 在输入B上的信号有多大? David: 在我们的视频应用中,任何大于-90dB的信号均是不可接受的。我们要测量的信号大约为-55dB。 Tamara: 我要更仔细地看看引起耦合的边缘电流(图3)。 图3:显示边缘电
14、流的前端布局。Tamara: 我明白。正是来自输入A的边缘电流在输入B中引起一个信号。 David: 那正是我们所猜测的。当边缘路径重叠时,我们就会发现存在串扰。为了验证这一理论,我们在电路板上切了几刀,如图4所示(绿色线是切割线)。 图4:具有割裂接地层(绿色)的两个通道的可选前端布局。David: 太令人惊讶了!耦合消失了它实际上低于噪声的电平。 Tamara: 那么,为什么那样做管用呢? David: 沿着电流的走向,总是存在一条环路,在接地层内部总是存在边缘电流以及因那些电流而产生的电压降。切割防止电流的混合,因此,它们不再能够从输入A直接耦合至输入B(或反之亦然)。 Tamara:
15、那么,这就是一个接地层布线错误的例子。具有切割线的接地层实际上表现更好。 David: 是的,大多数人认为,提供一条至地(像一接地层)的低阻抗连接就足够了。有时候,那的确正确,但是,另一方面它可能是错误的。如果你的确需要高度隔离,你就需要围绕整个环路跟随并控制电流。 Tamara: (例2)如果你确实有一块单芯片,那么,采用一块接地层就是好点子。让我们采用你已经示出的版图中的输入放大器的地。图5示出了我是如何把0.1 F的旁路电容跨接在接地层上的。 图5:具有通孔到接地层的运算放大器的版图David: 连接至地的通孔给旁路电容增加了一个串联电感,正如布线一样。芯片的地连接(如果它有一条的话,这
16、个运放却没有)通常有一个通孔把它连接到地,因此,环路具有两倍的通孔电感。 Tamara: 在左边的两个电阻(输入端和增益电阻)也连接到地。通过这四条连接可以给这个芯片提供非常好的局部接地。 David: 我们常常通过在芯片底部增加一条布线(仍然在顶层)来改善这种情况。这为从电源到地的回路提供一条直接和紧凑的环路。在这种情形下,在芯片下面没有空间把左边一对接地通孔与右边一对接地通孔连接在一起,因此,我通过在第一层增加焊盘来进一步降低接地层的阻抗,如图6所示。 图6:具有连接到接地层和顶层焊盘的运算放大器的版图。Tamara: 布线的厚度怎么样?厚的布线给出低阻抗的连接。看来你会把所有的电源和接地
17、布线做的尽可能宽。你曾经想过采用细的布线吗? David: 当然,我们努力保持围绕本地环路的阻抗非常小,但是,我们实际上想要回到电源的阻抗更高。细的布线实际上增加了一些跟主电源线的去耦,有助于把芯片与系统的其它部分隔离。 Tamara: 请在图2中指给我看看。 David: 高频路径就围绕着芯片。淡蓝色的布线就是厚的、低阻抗的电源线。更细的布线把每一个芯片与那些电源线连接。高频信号将维持在本地,而不会传输回电源。 Tamara: 你经常采用铁氧体磁珠把高频干扰与电源的其它部分去耦吗? David: 当然了,如果你有板子空间并且预算允许装一个的话。否则,采用更细的布线就是粗糙但有效的替代方案。
18、Tamara: 在我们结束采访前,我提最后一个问题。人们问我:你相信多点或星型接地吗?那就像是一个宗教问题。他们问你同样的问题吗? David: 时常会遇到这样的提问。然而,我不知道如何回答这个问题,因为我把各种技术综合起来运用。你需要利用你的所有独创性来设计接地系统。那并不是信仰问题。 Tamara: 我赞成你的见解。正如我能在这里所讨论的,那是就是要跟着电流走!(Tamara博士拿着一袋发着沙沙响声的书进入她的办公室,当Dave从旁边走过时她把那袋书扔在了桌子上。) Dave: 嗨,Tamara:博士,你往那里扔什么? Tamara: 那是我们的读者邮件。 Dave: 我们收到邮件?你的意
19、思是喜欢“来自新泽西Fort Lee的Richard Fader写道:这就是我听说的关于电容器的一切抱怨吗?”之类的邮件? Tamara: 是的,就是那样的信件。 Dave: 关于电容器以及排版吗? Tamara: 当然!这是一封来自Kyle(所有读者的姓名被改变,以保护他们隐私)。在高幅度射频场中,他惯常于把电容器级联起来以旁路他的电路。 Dave: 正如我们所说的,有时候你需要这么做,但是,许多时间你不需要这么做。 Tamara: 他也问到了耦合电容。看来他们在耦合电容上遇到的问题不如在旁路电容上遇到的问题大。 Dave: 是的,我已经注意到了那个问题,但是,一些人担心采用大的耦合电容,因
20、为它太慢。我认为,他们的思路不正确。 Tamara: 在今后的讨论中我们将着手解决那个问题。这里是Carl的评价。他对我们最近关于接地平面上的电压降问题提出的解决方案感到不确定。他认为,在它(感应作用)周围或者需要磁通,或者它仅仅是一个通常很小的IR降。 Dave: 是的,我们通常在视频系统中谈到的60dB的串扰非常小,意味着有几个毫伏的有害信号。上次在例子中我们证明了,为了便于描述,我们把电路做了相当多的简化。实际电路在每一个通道具有完整的直流恢复(具有电子机械继电器),并且它是通孔元件。从图1所示可见,当通孔元件或过孔破坏了一个接地层时会发生什么情况。 图1:视频混合器的电路板排版图。边缘
21、电流线显示出现串扰的可能性;带引脚的元件破坏接地层,并把电流线聚集在一起。Tamara: 你的意思是你不用表面贴装元件,因此,接地层上充满了带引脚的元件的通孔? Dave: 是的,来自输入的大多数回流通过围绕这个电路的窄带之中。与实体接地层相比,电阻要更大。 Tamara: 因此,边缘电路被更多地拥挤在一起。 Dave: 是的。串扰比你想像的要多。表面安装的元件对解决这个问题有很大帮助,因为它们具有更少的通孔,但是,把接地层分开是明智且容易的事情,并且不论你是否拥有大量的过孔它均能消除这个问题。如图2所示。 图2:视频混合电路板利用分开的接地层来把串扰最小化。Tamara: 免费、容易且有效听
22、起来就像放之四海皆准的惯例。Dave: 那真是我一直思考的事情。你在哪个领域取得了什么进展? Tamara: 我已经跟两家电容器公司X2Y以及KEMENT的代表进行了接触。 Dave: 他们怎么想的? Tamara: 我们在旁路电容上花费了太多的精力,你不知道你怎么想的吗? Dave: 啊,是的,我的意思是它们仅仅是电容器。 Tamara: 他们说,我们的研究不够。我们仅仅考虑两维。他们甚至要考虑电容器内部的侧景(side view)。 Dave: 他们重视我们建议的那样的电流路径吗? Tamara: 是的,通过减少他们的电容器的引脚的垂直封装面积,他们把等效串联电感(ESL)的标准数值从大约
23、2nH降低为原来的1/5。 Dave: 因此,即使专业公司也重视该电流(如释重负地叹息)。我们站在可巨人的肩膀上(停顿,心不在焉地凝视远方) Tamara: Dave. . . . DAVE. . Dave: 哦,对不起。那么,现在我们在哪里跟踪电流路径,Tamar博士。 Tamara: 我认为,我们需要做稍微深入的讨论,并通过一个例子分步讨论。我认为,我们的读者了解电流路径对于放置他们的旁路电容是至关重要的,但是,可能需要一个实例。让我们看看在一个简单的电路中,电流是在哪里流过的。让我们看看驱动一个负载的运放的输出。下面是一块简单的电路和电路板。 Dave: 好,让我们把讨论做的有趣一些。对
24、于输入偏置级的电压参考来说,怎么样? Tamara: 图3所示为具有增益为2的单电源运放配置。 图3:简单的运算放大器以及电压参考电路。Dave: 电压参考偏置均以电源电压的一半来输入以获得最佳的输入范围。 Tamara: 这次我们为排版选择采用双层电路板(上次那块板子采用四层板)。第二层几乎是完整的接地层,在输入和输出线上是两条跳线,如图4所示。 图4:单运放及其电压参考电路的印刷电路板排版。Dave: 让我们跟踪电流的路径(图5a和图5b)。 图5a和图5b:在参考电压中的交流以及直流路径。Tamara: 工程师们有时会混淆交流以及直流路径,因此,让我们把交流高频路径标记为蓝色,而把直流路
25、径标记为绿色。 Dave: 我要深入探讨一下。我用实线把驱动电路标出,因为它们的电流大多数在顶层流动并且回路用虚线表示,因为它们在接地层上的流动占突出地位。 Tamara: 你真厉害!Dave: 你可能认为,参考电源仅仅是直流电源,但是,它也是放大器中交流电路的一部分。要核查在参考电路中的高频电流路径。 Tamara: 我特别想知道,无源元件的堆叠如何让你干净地引入输入线并在U2、R4、C3和C5之间共享一小块接地焊盘。 Dave: 那并没有阻止我构建一条从R3至那个输入网络的紧凑(布局很好)的反馈路径。 Tamara: 高频路径是短且紧凑的,其环路通过输出旁路电容器C5以及参考旁路电容器C3。我猜测那就是为什么你把C3放在放大器U2附近,而不是放在上面的参考芯片U1旁边。在顶层上它们甚至共享额外的接地连接。 Dave: 没错。我们想要高频电流包含小的闭合面积,这意味着电感小。为了形成对照,请参见直流电流的回路。 Tamara: 它们在整块板子上展开并且甚至似乎离开电路板的顶层。 Dave: 是!直流电流必须来自电源,那意味着它进入并离开连接器或找到它流去本地电源调整器的途径。在任一情形下,路径的面积均大。 T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省镇江市丹徒区高中政治 第九课 唯物辩证法的实质与核心教案 新人教版必修4
- 二年级品德与生活上册 诚实故事会教案2 北师大版
- 2024秋八年级物理上册 第4章 光的折射 透镜 第一节 光的折射教案2(新版)苏科版
- 2024年秋九年级历史上册 第2单元 古代欧洲文明 第4课 希腊城邦和亚历山大帝国教案 新人教版
- 2024-2025学年高中英语 Module 5 Newspapers and Magazines教案1 外研版必修2
- 2024年五年级语文上册 第四单元 13 少年中国说(节选)配套教案 新人教版
- 2023六年级数学下册 第4单元 比例 2正比例和反比例练习课(正比例和反比例)教案 新人教版
- 换热站管理制度
- 自建房屋外包合同(2篇)
- 设计师求职简历幻灯片模板
- 2024年小红书品牌合作合同
- 2024-2030年中国再生金属行业发展形势及十三五规模研究报告
- 中国医科大学2024年12月(含解析)《形势与政策》作业考核试题
- 中国物联网安全行业市场现状、前景分析研究报告(智研咨询发布)
- 湘潭、成都工厂VDA63-2023审核员培训考核附有答案
- 济南2024年山东济南市文化和旅游局所属事业单位招聘人选笔试历年典型考题及考点附答案解析
- 助产专业职业生涯规划
- 整理收纳师课件
- (完整word版)英语四级单词大全
- 《烟酒有危害》公开课教案
- 《罗密欧与朱丽叶》剧本
评论
0/150
提交评论