版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角函数的诱导公式 ( 第 1 课时)教材 : 苏教版普通高中课程标准实验教科书(必修 4) 数学第 1.2.3 节一. 教学目标1知识与技能( 1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。( 2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。2 过程与方法( 1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。( 2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。3 情感、态度、价值观( 1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。( 2)在诱导公式的
2、探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。二. 教学重点与难点教学重点 : 探求 的诱导公式。 与的诱导公式在小结 的诱导公式发现过程的基础上,教师引导学生推出。教学难点 : ,与角终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。三. 教学方法与教学手段问题教学法、合作学习法,结合多媒体课件四. 教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。(一) 问题提出如何将任意角三角函数求值问题转化为0 360角三角函数求值问题。【
3、问题 1】求 390角的正弦、余弦值 .一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(+k360) = sin, cos( +k 360 ) = co,s (k z )tan( +k 360 ) = tan。这组公式用弧度制可以表示成sin(+2k ) = sin ,cos( +2k ) = cos ,(k z)(公式一 ) tan(+2k ) = tan。(二)尝试推导如何利用对称推导出角与角 的三角函数之间的关系。由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边
4、一定相同吗 ?比如说:【问题 2】你能找出和 30角正弦值相等, 但终边不同的角吗?角与角的终边关于 y 轴对称 ,有sin( ) = sin,cos( ) =cos,(公式二)tan( ) =tan。思考请大家回顾一下,刚才我们是如何获得这组公式(公式二 )的?因为与角终边关于 y 轴对称是角 -,利用这种对称关系,得到它们的终边与单位 圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角与角 的三角函数值之间的关系 :正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图: 角间关系对称关系坐标关系三角函数值间关系。(三)自主探究如何利用对称推导出 +,与 的三
5、角函数值之间的关系。刚才我们利用单位圆,得到了终边关于y 轴对称的角 -与角 的三角函数值之间的关系,下面我们还可以研究什么呢?【问题 3】两个角的终边关于x 轴对称 ,你有什么结论 ?两个角的终边关于原点对称呢?角与角的终边关于 x 轴对称,有:sin() =sin,cos() =cos,(公式三)tan() =tan。角 +与角终边关于原点 o 对称,有:sin( +) =sin,cos(+) =cos,(公式四)tan(+) = tan。上面的公式一 四都称为三角函数的诱导公式。(四)简单应用例求下列各三角函数值:7(1) sin 6;(2) cos( 60); ( 3) tan( 85
6、5 )(五)回顾反思【问题 4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想; 诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:(六)分层作业1 、阅读课本,体会三角函数诱导公式推导过程中的思想方法;2 、必做题 课本 23 页 133 、选做题( 1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?( 2)角 和角 的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?(七) 板书设计三角函数的
7、诱导公式角间关系 对称关系 坐标关系 三角函数值间关系公式一公式二公式三公式四画图学生板演板演三角函数的诱导公式 ( 第 1 课时) 教学设计说明我说课的内容是“三角函数诱导公式的教学设计”。下面,我将从 4 个方面进行汇报。一、 教学背景分析1. 教材的地位和作用本节教学内容是 4 组三角函数诱导公式的推导过程及其简单应用。承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简,以及三角函数的图象与性质(包括三角函数的周期性) 等内容。同时, 学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉。这些
8、构成了学生的知识基础。诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想。2. 目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大。我们认为,诱导公式的教学价值主要体现在以下几个方面:第一, 感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示。第二, 学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解。第三, 领悟思想方法, 在诱导公式的学习过程中领
9、悟化归、数形结合等思想方法。 第四, 积累数学经验, 为学生认识任意角三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备。为此,我们制定了本节的教学目标(详见教案),以及本节课的教学重、难点。二、教学设计分析在进行本课教学设计时,有以下两条典型教学路线可供选择:( 1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?我们最终选择了第一条路线,主要基于以下两点考虑。1. 尊重教材的编写方式。从对教材的分析来看,苏教版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,从而统整各组诱
10、导公式。 教材的编写处理体现了教材专家的集体智慧和版本教材的一贯特色,教师应该努力体会和把握, 不宜轻率抛开教材另搞一套。2. 切合学生的认知水平。利用学生熟悉的圆及其对称性研究三角函数的相关性质,符合学生的认知心理。同时,单位圆及其对称性的表象对学生推导诱导公式、理解公式之间的内在联系、形象记忆三角函数诱导公式都将起到事半功倍的效果。三、教学过程分析基于以上分析,我们确定了如下的本节课教学路线图:角间关系对称关系坐标关系三角函数值间关系围绕这个教学路线 (当然也是学生的研究路线),我将教学分成6 个环节并设计成问题串的形式,通过这些问题解构教材,让学生学习数学知识,培养数学能力,体会数学思想
11、,积累数学经验。1. 问题提出【教学安排】如何将任意角三角函数求值问题转化为0360角三角函数求值问题。【问题 1】求 390的正弦、余弦值。【设计意图】 前面的学习中, 已经将角的概念从锐角扩充到了任意角,学习了任意角三角函数的定义, 接下来自然地会提出任意角的三角函数值怎么去求。于是, 先安排求特殊值再过渡到一般情形比较符合学生的身心特点和认知规律,意在培养学生从特殊到一般归纳问 题和抽象问题的能力,引导学生在求三角函数值时抓坐标、抓角终边之间的关系。同时, 首先考虑 +2k( kz)与 的三角函数值之间的关系,有助于学生理解三角函数被看成刻画现实世界中周期性变化的数学模型的确切含义。2.
12、 尝试推导【教学安排】如何利用对称推导出角与角的三角函数之间的关系。【问题 2】你能找出和 30角正弦值相等,但终边不同的角吗?【设计意图】 对问题 2 的提问方式的设计主要是考虑到我们在研究问题的时候常常会研究它的逆命题、否命题、等价命题等。事实上问题2 可以看成是“若两个角的终边相同,则它们的正弦值相同”的逆命题,即“若两个角的正弦值相同,则两个角的终边相同”。但这里是以问题的形式提出的,实际上教会了学生一种自己研究问题的方法。在得出角 与角的三角函数之间的关系后,提出:思考请大家回顾一下,刚才我们是如何获得这组公式( 公式二 ) 的?【设计意图】 阶段小结, 让学生将对称作为研究三角函数
13、问题的一种方法使用。 将上述研究过程进行梳理,得出“ 角间关系对称关系坐标关系三角函数值间关系” 的研究路线图。3. 自主探究【教学安排】如何利用对称推导出+,与 的三角函数值之间的关系。【问题 3】两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?【设计意图】 从两个角的终边关于y 轴对称的情况进行自然过渡,给学生留下了自主探究的空间, 让他们再次经历公式的研究过程,从而得出公式三和四, 并将问题 2 研究方法一般化。4. 简单应用【教学安排】例题的练习、讲解。【例 1】求下列各三角函数值:(1) sin76 ; (2) cos(60) ;( 3) tan(855 ) 。
14、【设计意图】 初步熟悉诱导公式的使用,让学生感悟在解决问题的过程中,如何合理的使用这几组公式。 此外,引导学生注意同一个三角函数的求值问题可以采用不同的诱导公式,启发学生这些公式的内在关系和联系,体会数学方法的多样性。5. 回顾反思【教学安排】开放式小结。【问题 4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?【设计意图】 开放式小结, 使得不同的学生有不同的学习体验和收获。这些问题的提出, 侧重于诱导公式推导方法的回顾和反思,侧重于个体情感体验的分享和表达,从而区别于侧重于公式规律的总结和记忆。6. 分层作业【教学安排】作业布置。【作业】1) 阅读课本,体会三角函数诱导公
15、式推导过程中的思想方法。2) 必做题:课本第23 页第 13 题。3) 选做题:( 1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?( 2)角 和角 的终边还有哪些特殊的位置关系?你能探究出它们的三角函数值之间的关系吗?【设计意图】 分层作业有利于不同层次的学生巩固知识,提升思维能力。 阅读课本旨在引导学生教科书是学习的根本,阅读课本有利于培养学生良好的回归课本的学习习惯。而出现选做题目, 目的是提供多元化和挑战性选择,促使学有余力的学生课后思考和自主探究几组公式之间的内在联系。四、教后思考分析1. 关于设计定位的反思就三角函数的诱导公式来说,教学设计定位时一般会出现以下几种倾向
16、:其一, 定位于知识的学习,学生知道存在一些公式,可以将任意角的三角函数进行一些转化。其二,定位于公式的学习, 学生努力分析和总结各组公式的形式规律,背诵“函数名不变, 符号看象限” 等口诀, 追求灵活运用等解题能力的提高。公式理解强过公式记忆。 关于公式规律的总结和口诀的记忆, 当然很重要, 但这不是第一节课的内容。 我们可以在所有诱导公式都学习过后, 再来总结不迟。 此外, 采用本课的利用对称性的方法来学习诱导公式,可以通过图形的对称性来形象记忆, 可以减轻学生记忆负担,规避死记硬背现象的发生。其三,聚焦诱导公式的推导过程, 强调对公式产生的过程的深入理解。其四,在关注知识学习的同时,渗透
17、数学思想方法的理解和领悟。本课主要涉及数形结合、从一般到特殊或从特殊到一般、模型思想、化归思想、 追求简易等数学思想方法。我们认为新授知识是很重要的,而数学思想方法是蕴含其中的, 应该潜移默化地渗透, 不能贴标签, 更不能因为数学思想方法的重要而喧宾夺主地过渡渲染。2. 关于教学难点的突破1) 本节课的难点在于从问题2 出发,发现关于 y 轴对称的三角函数诱导公式,从而总结出研究线路图。从对教材的分析来看,苏教版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,这样处理的好处是简化了任意角的象限分类和化归, 起到了利用直观的对称这个工具和研究手法去研究诱导公
18、式的变化规律的目的,揭示了代数和几何的有机结合和统一。2) 任意性循环上升。在这节课中,角的任意性是一个教学难点,为此我们设置了 三个点:( 1)问题 2 中非 30不可吗?任意角 行不行?( 2)几何画板拖动演示感受角 的任意性。( 3)习题中进一步深化学生认识。随着学生学习的深入,对这个问题还会有进一步的认识。事实上,有许多同学在一开始是将角 当成锐角去处理的,但我在教学中不过分强调角 的任意性,因为对待数学知识的教学不能一步到位,不应毕其功于一役, 而应循环上升,力求顺其自然,水到渠成。3. 关于问题串的设置调控在本节课中, 我们将教学设计成以一以贯之的问题串形式,通过这些问题串起相互关联的数学问题,使学生学习知识,形成能力,发展认知。我们在设计过程中,尽量将问题的难易程度定位在学生的最近发展区内,问题的设计从思维的角度来说具有一定的开放性,使得学生可以从不同的角度来思考;问题的设计从解决的难度来说具有一定的层次性,使得不同的学生尽量愿意提出自己的见解。教师通过问题串的这个脚手架便于组织教学,并和学生形成互动, 促进学生在学习知识的同时形成网状知识联结。实践证明, 问题串的使用让教学组织有章可循,内容推进自然而不造作,完整而不破碎。4. 关于教学评价分析我们觉得本次的教
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪师范学院《行政法学》2021-2022学年期末试卷
- 2024工艺品加盟合同书范本
- 2024年手持云台合作协议书
- 盐城师范学院《照明设计》2022-2023学年第一学期期末试卷
- 盐城师范学院《通信原理》2021-2022学年第一学期期末试卷
- 2024瓷砖购销合同
- 2024年油气储层保护剂项目合作计划书
- 2024年提供住宿社会救助服务合作协议书
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷附参考答案ab卷
- 2024企业食堂供货合同
- 外研版英语四年级研课标说教材44张课件
- 哈尼族介绍课件
- DB33∕T 2333-2021 饲料中β-胡萝卜素的测定 高效液相色谱法
- 信贷业务档案管理暂行办法
- 初中生物-济南出版社八年级上册 第六单元第二章第二节 食物链和食物网教学课件设计
- 中华人民共和国药典(2023年版)
- 湖南2023年湖南银行上半年社会招聘考试参考题库含答案详解
- 粒子物理基础-课件
- 兰新线兰武段增建第二线某特长隧道施工组织设计
- 老旧小区改造临时用电专项方案
- 北京市政基础设施竣工“长城杯”汇报材料
评论
0/150
提交评论