《回归分析四》ppt课件_第1页
《回归分析四》ppt课件_第2页
《回归分析四》ppt课件_第3页
《回归分析四》ppt课件_第4页
《回归分析四》ppt课件_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.1回归分析的根回归分析的根本思想及其初步本思想及其初步运用四运用四高二数学高二数学 选修选修2-3 第三章第三章 统计案例统计案例 比中“回归添加的内容数学数学统计统计画散点图画散点图了解最小二乘法的思了解最小二乘法的思想想求回归直线方程求回归直线方程y ybxbxa a用回归直线方程处理用回归直线方程处理运用问题运用问题选修2-3统计案例引入线性回归模型ybxae了解模型中随机误差项e产生的缘由了解相关指数 R2 和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型处理一类非线性回归问题正确了解分析方法与结果复习回想复习回想1、线性回归模型:、线性回归模型:y=bx+a+e, (3

2、)其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差。称为随机误差。y=bx+a+e,E(e)=0,D(e)= (4) 2.2、数据点和它在回归直线上相应位置的差别、数据点和它在回归直线上相应位置的差别 是随机误差的效应,称是随机误差的效应,称 为残差。为残差。)iiyy(iiieyy=3、对每名女大学生计算这个差别,然后分别将所得、对每名女大学生计算这个差别,然后分别将所得的值平方后加起来,用数学符号表示为:的值平方后加起来,用数学符号表示为: 称为残差平方和,它代表了随机误差的效应。称为残差平方和,它代表了随机误差的效应。21()niiiyy4、两个目的:、两个目的:1类比

3、样本方差估计总体方差的思想,可以用作类比样本方差估计总体方差的思想,可以用作 为为 的估计量,的估计量, 越小,预告精度越高。越小,预告精度越高。22111( , )(2)22nieQ a b nnn222我们可以用相关指数我们可以用相关指数R2来描写回归的效果,其来描写回归的效果,其 计算公式是:计算公式是:222112211()()1()()nniiiiinniiiiyyyyRyyyy 在研讨两个变量间的关系时,首先要根据散点图来粗略判别它们能否线性相在研讨两个变量间的关系时,首先要根据散点图来粗略判别它们能否线性相关,能否可以用回归模型来拟合数据。关,能否可以用回归模型来拟合数据。5、残

4、差分析与残差图的定义:、残差分析与残差图的定义: 然后,我们可以经过残差然后,我们可以经过残差 来判别模型拟合的效果,判别来判别模型拟合的效果,判别原始数据中能否存在可疑数据,这方面的分析任务称为残差分析。原始数据中能否存在可疑数据,这方面的分析任务称为残差分析。12,ne ee 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。案例案例2 一只红铃虫的产卵数一只红铃虫的产卵数y和温度和

5、温度x有关。现搜集了有关。现搜集了7组观测数据列于表中:组观测数据列于表中:1 1试建立产卵数试建立产卵数y y与温度与温度x x之间的回归方程;并之间的回归方程;并预测温度为预测温度为28oC28oC时产卵数目。时产卵数目。2 2他所建立的模型中温度在多大程度上解释了他所建立的模型中温度在多大程度上解释了产卵数的变化?产卵数的变化? 温度温度xoC21232527293235产卵数产卵数y/个个711212466115325非线性回归问题非线性回归问题假设线性回归方程为假设线性回归方程为 :=bx+a选选 模模 型型由计算器得:线性回归方程为由计算器得:线性回归方程为y=19.87x-463

6、.73y=19.87x-463.73 相关指数相关指数R2=r20.8642=0.7464R2=r20.8642=0.7464估计参数估计参数 解:选取气温为解释变量解:选取气温为解释变量x x,产卵数,产卵数 为预告变量为预告变量y y。选变量选变量所以,二次函数模型中温度解释了所以,二次函数模型中温度解释了74.64%的产卵数变化。的产卵数变化。探求新知探求新知画散点图画散点图050100150200250300350036912151821242730333639方案1分析和预测分析和预测当当x=28时,时,y =19.8728-463.73 93一元线性模型一元线性模型奇异?奇异?93

7、66 ?模型不好?模型不好? y=bx2+a 变换变换 y=bt+a非线性关系非线性关系 线性关系线性关系方案2问题问题选用选用y=bx2+a ,还是,还是y=bx2+cx+a ?问题问题3-200-1000100200300400-40-30-20-10010203040 产卵数产卵数气温气温问题问题2如何求如何求a、b ?协作探求协作探求 t=x2二次函数模型二次函数模型方案2解答平方变换:令平方变换:令t=x2t=x2,产卵数,产卵数y y和温度和温度x x之间二次函数模型之间二次函数模型y=bx2+ay=bx2+a就转化为产卵数就转化为产卵数y y和温度的平方和温度的平方t t之间线性

8、回归模型之间线性回归模型y=bt+ay=bt+a温度温度21232527293235温度的平方温度的平方t44152962572984110241225产卵数产卵数y/个个711212466115325作散点图,并由计算器得:作散点图,并由计算器得:y y和和t t之间的线性回归方程为之间的线性回归方程为y=0.367t-202.543y=0.367t-202.543,相关指数,相关指数R2=0.802R2=0.802将将t=x2t=x2代入线性回归方程得:代入线性回归方程得: y=0.367x2 -202.543 y=0.367x2 -202.543当当x=28x=28时,时,y=0.367

9、y=0.367282-282-202.5485202.5485,且,且R2=0.802R2=0.802,所以,二次函数模型中温度解所以,二次函数模型中温度解释了释了80.2%80.2%的产卵数变化。的产卵数变化。产卵数y/个0501001502002503003500150300450600750900 1050 1200 1350t问题问题 变换变换 y=bx+a非线性关系非线性关系 线性关系线性关系21c xyce问题问题如何选取指数函数的底如何选取指数函数的底?-50050100150200250300350400450-10-50510152025303540产卵数产卵数气温气温指数函

10、数模型指数函数模型方案3协作探求协作探求对数对数方案3解答温度温度xoC21232527293235z=lny1.9462.3983.0453.1784.1904.7455.784产卵数产卵数y/个个71121246611532500.40.81.21.622.42.8036912 15 18 21 24 27 30 33 36 39xz当当x=28oC x=28oC 时,时,y 44 y 44 ,指数回归,指数回归模型中温度解释了模型中温度解释了98.5%98.5%的产卵数的的产卵数的变化变化由计算器得:由计算器得:z z关于关于x x的线性回归方程的线性回归方程为为0.272x-3.849

11、 .ye22111221lnln()lnlnlnlnlnc xc xycececc xec xc 对数变换:在对数变换:在 中两边取常用对数得中两边取常用对数得21c xyce令令 ,那么,那么 就转换为就转换为z=bx+a.z=bx+a.12ln,ln,zy ac bc21c xyce z=0.272x-3.849 ,相关指数相关指数R2=0.98R2=0.98最好的模型是哪个最好的模型是哪个?-200-1000100200300400-40-30-20-10010203040 产卵数产卵数气温气温-50050100150200250300350400450-10-5051015202530

12、3540产卵数产卵数气温气温线性模型线性模型二次函数模型二次函数模型指数函数模型指数函数模型比一比比一比函数模型函数模型相关指数相关指数R2线性回归模型线性回归模型0.7464二次函数模型二次函数模型0.80指数函数模型指数函数模型0.98最好的模型是哪个最好的模型是哪个?回归分析二回归分析二(1)0.2723.849(2)2y,y0.367202.543.xex那么回归方程的残差计算公式分别那么回归方程的残差计算公式分别为:为:由计算可得:由计算可得:(1)(1)0.2723.849(2)(2)2,1,2,.,7;0.367202.543,1,2,.,7.xiiiiiiiieyyyeieyy

13、yxix21232527293235y7112124661153250.557-0.1011.875-8.9509.230-13.38134.67547.69619.400-5.832-41.000-40.104-58.26577.968(1) e(2) e(1)(2)1550.538,15448.431.QQ因此模型因此模型1的拟合效果远远优于模型的拟合效果远远优于模型2。总总 结结1122( ,),(,),.,(,),nnx yxyxy 对于给定的样本点对于给定的样本点两个含有未知参数的模型:两个含有未知参数的模型:(1)(2)( , )( , ),yf x ayg x b和其中其中a和和

14、b都是未知参数。拟合效果比较的步骤为:都是未知参数。拟合效果比较的步骤为:1分别建立对应于两个模型的回归方程分别建立对应于两个模型的回归方程与与 其中其中 和和 分别是参数分别是参数a和和b的估计值;的估计值;2分别计算两个回归方程的残差平方和分别计算两个回归方程的残差平方和与与3假设假设 那么那么 的效果比的效果比 的好;反之,的好;反之, 的效的效果不如果不如 的好。的好。(1)( , )yf x a(2)( , ),yg x b ab(1)(1)21()niiiQyy(2)(2)21() ;niiiQyy(1)(2),QQ(1)( , )yf x a(2)( , )yg x b(2)(

15、, )yg x b(1)( , )yf x a练习:为了研讨某种细菌随时间练习:为了研讨某种细菌随时间x x变化,繁衍的个数,变化,繁衍的个数,搜集数据如下:搜集数据如下:天 数天 数 x /x /天天 1 2 34 4 56 6繁衍个数繁衍个数y/y/个个 6 12 25 49 95190190 1 1用天数作解释变量,繁衍个数作预告变量,作出这些用天数作解释变量,繁衍个数作预告变量,作出这些 数据的散点图;数据的散点图; 2 2 描画解释变量与预告变量描画解释变量与预告变量 之间的关系;之间的关系; 3 3 计算残差、相关指数计算残差、相关指数R2.R2.天数天数繁衍个数繁衍个数解:解:1

16、散点图如右所示散点图如右所示 2 2由散点图看出样本点分布在一条指数函数由散点图看出样本点分布在一条指数函数y= y= 的的周围,于是令周围,于是令Z=lny,Z=lny,那么那么2C x1eCx x1 12 23 34 45 56 6Z Z1.791.792.482.483.223.223.893.894.554.555.255.25由计数器算得由计数器算得 那么有那么有Z=0.69X 1.1120.69x 1.112 y=e y6.066.0612.0912.0924.0924.0948.0448.0495.7795.77190.9190.9y y6 61212252549499595190190n22ii=11e()3.1643,niiiyyn222i1i=1()yny25553.3.niiyy3即解释变量天数对预告变量繁衍细菌得个数解释了即解释变量天数对预告变量繁衍细菌得个数解释了99.99%.99.99%.23.164310.9999.25553.3R 练习练习 假设关于某设备的运用年限假设关于某设备的运用年限x和所支出的和所支出的维修费用维修费用 y万元,有如下的统计资料。万元,有如下的统计资料。运用年限运用年限x 23456维修费用维修费用y 2.23.85.56.57.0假设由资料知假设由资料知,y对对x呈线性相关关系。试求:呈线性相关关系。试

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论