下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教版高中数学必修三3.3几何概型教学设计教学目标1知识目标通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;理解并掌握几何概型的定义;会求简单的几何概型试验的概率.2情感目标让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价身边的一些随机现象;通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.重点难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用.只有掌握了几何概型的概念及特点,才能够判断一个问题是否是几何概型,才能够用几何概型的概率公式去解决这个问题.而
2、在应用公式的过程中,几何度量的正确选取是难点之一,要好好把握.学情分析及教学内容分析本节课是新教材人教a版必修3第三章第三节的第一课,它在课本中的位置排在古典概型之后,在概率的应用之前.我认为教材这样安排的目的,一是为了体现和古典概型的区别和联系,在比较中巩固这两种概型;二是为解决实际问题提供一种简单可行的概率求法,在教材中起承上启下的作用.通过最近几年的实际授课发现,学生在学习本节课时特别容易和古典概型相混淆,把几何概型的“无限性”误认为古典概型的“有限性”.究其原因是思维不严谨,研究问题时过于“想当然”,对几何概型的概念理解不清.因此我认为要在几何概型的特征和概念的理解上下功夫,不要浮于表
3、面.另外,在解决几何概型的问题时,几何度量的选择也是需要特别重视的,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.为了更好地突出重点,突破难点,我将整个教学过程分为“问题引入概念形成探索归纳巩固深化”四个环节.教学过程1问题引入引例1 北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,则可获得一套福娃玩具,问顾客能得到一套福娃玩具的概率是多少? 设计意图:复习巩固古典概型的特点及其概率公式,为几何概型的引入做好铺垫.引例2 厂商为了增强活动的趣味性,改变了活动方式,设立了一个可以自由转动的转盘(如图
4、1)转盘被等分成8个扇形区域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的概率是多少?设计意图:1以实际问题引发学生的学习兴趣和求知欲望;2以此为铺垫,通过具体问题情境引入课题;3简单直观,符合学生的思维习惯和认知规律.问题提出后,学生根据日常生活经验很容易回答:“由面积比计算出概率为1/4.”提问:为什么会想到用面积之比来解决问题的呢?这样做有什么理论依据吗?学生思考,回答:“上一节刚学习的古典概型的概率就是由事件 所包含的基本事件数占试验的基本事件总数的比例来解决的,所以联想到用面积的比例来解决.”教师继续提问:这个问题是
5、古典概型吗?通过提问,引导学生回顾古典概型的特点:有限性和等可能性.发现这个问题虽然貌似古典概型,但是由于这个问题中的基本事件应该是“指针指向的位置”,而不是“指针指向的区域”,所以有无限多种可能,不满足有限性这个特点,因此不是古典概型.也就是说,我们不能用古典概型的概率公式去解决这个问题,刚才我们的解答只是猜测.到这里,我们自然而然地需要一个理论依据去支持这个猜测,从而引入几何概型的概念.2概念形成记引例2中的事件 为“指针指向阴影区域”,通过刚才的分析,我们发现事件 包含的基本事件有无数个,而试验的基本事件总数也是无数个.如果我们仿照古典概型的概率公式,用事件 包含的基本事件个数与试验的基
6、本事件总数的比例来解决这个问题,那样就会出现“无数比无数”的情况,没有办法求解.因此,我们需要一个量,来度量事件 和 ,使这个比例式可以操作,这个量就称为“几何度量”.这就得到了几何概型的概率公式 ,其中 表示区域 的几何度量, 表示子区域 的几何度量.引例2就可以选取面积做几何度量来解决.通过上面的分析,引导学生发现:几何概型与古典概型的区别在于它的试验结果不是有限个,但是它的试验结果在一个区域内均匀地分布,因此它满足无限性和等可能性的特征.其求解思路与古典概型相似,都属于“比例解法”.3. 探索归纳问题1 在500ml水中有一个草履虫,现从中随机抽取2ml水样放到显微镜下观察,求发现草履虫
7、的概率.问题2 取一根长为4米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1米的概率是多少?设计意图:1让学生分别体会用体积、长度之比来度量概率,加深学生对几何概型概念的理解;2强化解决几何概型问题的关键是抓住问题的实质,找出临界状态。这是解决几何概型问题的第一个关键.问题3 如图2, 设 为圆周上一定点,在圆周上等可能地任取一点与 连结,求弦长超过半径的概率?由学生讨论解答.预期思路1:(见图3) 根据题意,在圆周上随机取一点,有无限种可能,而每一点被取到的机会都一样,满足几何概型的特点,可以考虑用几何概型求解.先找临界状态,即弦长等于半径时所取的点的位置.找到 两个位置,使得
8、和 是两个全等的正三角形.即在 取点时弦长刚好等于半径;而在 和 两段劣弧上取点时弦长小于半径;在 这段优弧上取点时,弦长超过半径。因此问题转化为弧长之比.预期思路2:(见图4)也可以转化为角度之比.预期思路3:(见图5)也可以转化为面积之比.提出问题:为什么这道题可以用弧长、角度、面积等不同的几何度量去求解?由学生分组讨论,给出回答:因为在半径一致的情况下,弧长之比等于角度之比,也等于面积之比.设计意图:加深学生对几何概型的理解,从而抓住解决几何概型问题的实质.问题4 如图6,将一个长与宽不等的长方形水平放置,长方形对角线将其分成四个区域.在四个区域内涂上红、蓝、黄、白四种颜色,并在中间装个
9、指针,使其可以自由转动.对于指针停留的可能性,下列说法正确的是( )a一样大 b. 黄、红区域大 c. 蓝、白区域大 d. 由指针转动圈数确定设计意图:通过与引例2对比,使学生发现这两个问题选择的正确几何度量应该是“角度”,而不是“面积”.而引例2之所以用面积比也能解决问题,是因为其面积比恰好等于角度比.提出问题:如何才能找到最恰当的几何度量呢?引导学生找问题中的“提示”.如问题3中在圆周上任意取点,因此选取弧长作为几何度量是最恰当的方法.几何度量的正确选择是解决几何概型问题的第二个关键.4。巩固深化练习1 如图7,在面积为 的 的 边上任取一点 ,求 的面积小于 的概率.练习2 如图8,向面
10、积为 的 内任投一点 ,求 的面积小于 的概率.练习3 如图9,向体积为 的三棱锥 内任投一点 ,求三棱锥 的体积小于 的概率.设计意图:通过这3个问题的对比,加深学生对几何度量选取的理解,关键是判断在何处取点.问题5 一海豚在水池中自由游弋,水池为长30m,宽20m的长方形(如图10),求此刻海豚嘴尖离岸边不超过2m的概率.问题6 平面上画了一些彼此相距 的平行线,把一枚半径为 的硬币任意掷在这平面上(如图11),求硬币不与任一条平行线相碰的概率设计意图:1开拓学生的思路,进一步提高学生分析、解决问题的能力;2引导学生归纳总结解决几何概型问题的第三个关键:物化为点.如问题5 中,我们选择了海
11、豚的嘴尖为研究对象,问题6中,我们则选择硬币的中心为研究对象.物化为点之后,研究起来会更加便捷.在处理问题6时,先由学生自主思考,而后合作交流,发表自己的看法,培养学生概括归纳的能力。5课堂小结这个工作我准备交给学生去做。让学生自己总结:这节课你学到了什么?通过这节课你掌握了哪些方法?应该注意些什么问题?有哪些思想是在以后的学习中可以借鉴的等等,引导学生对这节课的内容加以巩固深化.课后反思本节课采用了类比的思维方式,让学生明确古典概型与几何概型的异同。在启发式教学方式的引领下,以问题串的形式开启学生思维之门。通过课后检测,发现本节课学生的学习效果比较不错.我认为本节课有以下五个方面做得比较成功.1通过具体的问题情境引入,容易激发学生的学习兴趣和求知欲.2通过与古典概型对比,产生矛盾,促使学生迫切想去探求解决问题的方法.3分解难度,将抽象的概念“解剖”,易于理解.4问题设置层层递进,由浅入深,有层次、有目标地解决各个难点,符合学生的学习规律.5本节课中所体现的极限思想、类比思想、转化思想等将会对学生的思维发展有所帮助.本节课的不足之处在于教师做的准备工作太多,问题设置得过于紧密,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国钢木结构户外休闲椅市场调查研究报告
- 2024年中国男士棉服市场调查研究报告
- 工厂用工作合同
- 食堂餐饮服务承包合同模板
- 2024装修工程监理合同
- 2024年印刷合同标准范文(2篇)
- 2024年地震勘探数据处理系统项目申请报告
- 房地产抵押合同范文大全解析
- 2024年家庭保洁项目申请报告范稿
- 2024年皮革项目立项申请报告范文
- 2024年九年级化学上册 第6单元 碳和碳的氧化物教案 (新版)新人教版
- 2024详解新版《公司法》课件
- 医院法律、法规培训课件
- 2024年高考作文真题解读(立意+提纲+范文+总评)
- 美沙酮门诊管理新规制度
- 2024年河南省信阳市新县中考一模数学试题 【含答案解析】
- 正常与心梗心电图
- 2024年高考语文阅读之李娟散文专练全国解析版
- 国开2024《人文英语4》边学边练参考答案
- 10kV氧化锌(带脱离器)避雷器关键技术标准规范书
- DB32T4065-2021建筑幕墙工程技术标准
评论
0/150
提交评论