版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、经济数学基础微分函数一、单项选择题1函数的定义域是(d ) ab cd 且2若函数的定义域是0,1,则函数的定义域是(c)a b c d3下列各函数对中,(d)中的两个函数相等 a, b,+ 1 c, d,4设,则=( a) a b c d 5下列函数中为奇函数的是(c)a b c d 6下列函数中,(c)不是基本初等函数 a b c d7下列结论中,(c)是正确的 a基本初等函数都是单调函数 b偶函数的图形关于坐标原点对称 c奇函数的图形关于坐标原点对称 d周期函数都是有界函数 8. 当时,下列变量中(b )是无穷大量a. b. c. d. 9. 已知,当(a )时,为无穷小量.a. b.
2、c. d. 10函数 在x = 0处连续,则k = (a)a-2 b-1 c1 d2 11. 函数 在x = 0处(b )a. 左连续 b. 右连续 c. 连续 d. 左右皆不连续 12曲线在点(0, 1)处的切线斜率为( a ) a b c d 13. 曲线在点(0, 0)处的切线方程为(a )a. y = x b. y = 2x c. y = x d. y = -x 14若函数,则=( b ) a b- c d- 15若,则( d ) a b c d 16下列函数在指定区间上单调增加的是( b ) asinx be x cx 2 d3 - x 17下列结论正确的有( a ) ax0是f (
3、x)的极值点,且(x0)存在,则必有(x0) = 0 bx0是f (x)的极值点,则x0必是f (x)的驻点 c若(x0) = 0,则x0必是f (x)的极值点 d使不存在的点x0,一定是f (x)的极值点 18. 设需求量q对价格p的函数为,则需求弹性为ep=( b )a b c d 19函数的定义域是(d) a b c d 且20函数的定义域是( c )。a b c d21下列各函数对中,(d)中的两个函数相等a, b,+ 1c, d,22设,则=(c)a b c d23下列函数中为奇函数的是(c)a b c d24下列函数中为偶函数的是(d)a b c d25. 已知,当(a )时,为无
4、穷小量.a. b. c. d. 26函数 在x = 0处连续,则k = (a)a-2 b-1 c1 d2 27. 函数 在x = 0处连续,则(a )a. 1 b. 0 c.2 d. 28曲线在点(0, 1)处的切线斜率为( a )a b c d 29. 曲线在点(1, 2)处的切线方程为(b )a. b. c. d. 30若函数,则=( b ) a b- c d-31下列函数在指定区间上单调减少的是( d )asinx be x cx 2 d3 x 32下列结论正确的有( a ) ax0是f (x)的极值点,且(x0)存在,则必有(x0) = 0 bx0是f (x)的极值点,则x0必是f (
5、x)的驻点 c若(x0) = 0,则x0必是f (x)的极值点d使不存在的点x0,一定是f (x)的极值点 33. 设需求量q对价格p的函数为,则需求弹性为ep=( b )a b c d二、填空题1函数的定义域是 -5,2 2函数的定义域是 (-5, 2 ) 3若函数,则 4设函数,则5设,则函数的图形关于y轴 对称6已知生产某种产品的成本函数为c(q) = 80 + 2q,则当产量q = 50时,该产品的平均成本为3.67已知某商品的需求函数为q = 180 4p,其中p为该商品的价格,则该商品的收入函数r(q) = 45q 0.25q 28. 1.9已知,当时,为无穷小量10. 已知,若在
6、内连续,则2 .11. 函数的间断点是12函数的连续区间是,13曲线在点处的切线斜率是14函数y = x 2 + 1的单调增加区间为(0, +)15已知,则= 016函数的驻点是 17需求量q对价格的函数为,则需求弹性为 18已知需求函数为,其中p为价格,则需求弹性ep = 19函数的定义域是答案:(-5, 2 )20若函数,则答案:21设,则函数的图形关于对称答案:y轴22已知,当 时,为无穷小量答案:23已知,若在内连续则 . 答案224函数的间断点是答案:25. 函数的连续区间是答案:26曲线在点处的切线斜率是答案: 27. 已知,则= 答案:028函数的单调增加区间为答案:(29. 函
7、数的驻点是 . 答案:30需求量q对价格的函数为,则需求弹性为。答案:三、计算题1 1解 = = = 22解:= =3 3解 = =22 = 4 44解 = = = 2 5 5解 66解 = =7已知,求 7解:(x)= =8已知,求 8解 9已知,求;9解 因为 所以 10已知y =,求 10解 因为 所以 11设,求11解 因为 所以 12设,求12解 因为 所以 13已知,求 13解 14已知,求 14解: 15由方程确定是的隐函数,求 15解 在方程等号两边对x求导,得 故 16由方程确定是的隐函数,求.16解 对方程两边同时求导,得 =.17设函数由方程确定,求17解:方程两边对x求
8、导,得 当时, 所以,18由方程确定是的隐函数,求18解 在方程等号两边对x求导,得 故 19已知,求 解: 20已知,求 解: 21已知,求;解:22已知,求dy 解: dy=23设 y,求dy解:24设,求 解:四、应用题 1设生产某种产品个单位时的成本函数为:(万元),求:(1)当时的总成本、平均成本和边际成本; (2)当产量为多少时,平均成本最小? 1解(1)因为总成本、平均成本和边际成本分别为:, 所以, , (2)令 ,得(舍去)因为 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20时,平均成本最小. 2某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60
9、元,对这种产品的市场需求规律为(为需求量,为价格)试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?2解 (1)成本函数= 60+2000 因为 ,即, 所以 收入函数=()= (2)因为利润函数=- =-(60+2000) = 40-2000 且 =(40-2000=40- 0.2令= 0,即40- 0.2= 0,得= 200,它是在其定义域内的唯一驻点 所以,= 200是利润函数的最大值点,即当产量为200吨时利润最大3设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元又已知需求函数,其中为价格,为产量,这种产品在市场上是畅销的,试求:(1)价格
10、为多少时利润最大?(2)最大利润是多少?3解 (1)c(p) = 50000+100q = 50000+100(2000-4p) =250000-400p r(p) =pq = p(2000-4p)= 2000p-4p 2 利润函数l(p) = r(p) - c(p) =2400p-4p 2 -250000,且令 =2400 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. (2)最大利润 (元)4某厂生产某种产品q件时的总成本函数为c(q) = 20+4q+0.01q2(元),单位销售价格为p = 14-0.01q(元/件),试求:(1)产量为多
11、少时可使利润达到最大?(2)最大利润是多少? 4解 (1)由已知利润函数则,令,解出唯一驻点.因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, (2)最大利润为 (元 5某厂每天生产某种产品件的成本函数为(元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 5. 解 因为 = () = 令=0,即=0,得=140,= -140(舍去).=140是在其定义域内的唯一驻点,且该问题确实存在最小值. 所以=140是平均成本函数的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为 =176 (元/件) 6已知某厂生产件产品的成本为(万元)问:
12、要使平均成本最少,应生产多少件产品? 6解 (1) 因为 = = 令=0,即,得=50,=-50(舍去), =50是在其定义域内的唯一驻点 所以,=50是的最小值点,即要使平均成本最少,应生产50件产品7设生产某种产品个单位时的成本函数为:(万元),求:(1)当时的总成本、平均成本和边际成本; (2)当产量为多少时,平均成本最小?解(1)因为总成本、平均成本和边际成本分别为:, 所以, , (2)令 ,得(舍去) 因为是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20时,平均成本最小. 8某厂生产某种产品q件时的总成本函数为c(q) = 20+4q+0.01q2(元),单位销售价格为p
13、 = 14-0.01q(元/件),问产量为多少时可使利润达到最大?最大利润是多少.解 由已知利润函数 则,令,解出唯一驻点.因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 且最大利润为 (元) 9某厂每天生产某种产品件的成本函数为(元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 解 因为 = () = 令=0,即=0,得=140,= -140(舍去).=140是在其定义域内的唯一驻点,且该问题确实存在最小值. 所以=140是平均成本函数的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为 =176 (元/件) 10某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探索数据奥秘:2024年SA20培训教程解析
- 重庆大学2021年春季学期课程作业《钢结构设计》
- 掌握工业自动化:2024年ABPLC培训教程深度解析
- 2024年《陀螺》课程探讨
- 教案点评:2024年三角形分类教学新思路
- 科目一考试技巧记忆口诀-驾考实操
- 平安保卫工作手册
- 《六国论》课件的环保解读:2024年绿色教育趋势
- 2024年SEM入门培训教程-走向网络营销巅峰
- 焊接高级技师论文-耐热钢壁管的TIG焊接工艺
- 2024年湖北省十堰市荆楚初中联盟八年级中考模拟预测生物试题
- 资源教室检查方案
- 2024年春上海开放大学《危机公共关系》计分作业1-3
- 中医优势病种诊疗方案优化建议
- 第9课 发展社会主义民主政治(课件)-【中职专用】高一思想政治《中国特色社会主义》(高教版2023·基础模块)
- 医院院外会诊申请单、医师外出会诊审核表、医师外出会诊回执
- 茶叶公司安全生产管理制度
- MOOC 理论力学-长安大学 中国大学慕课答案
- 第7课+全球航路的开辟和欧洲早期殖民扩张+导学案-2023-2024学年中职高一下学期高教版(2023)世界历史全一册
- 个体诊所备案信息表
- 八年级语文期中考试成绩分析及教学反思(3篇)
评论
0/150
提交评论