下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学案设计 第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第2课时)学习目标1.通过对比、转化,总结得出配方法的一般过程,提高推理能力.2.会用配方法解简单的数字系数的一元二次方程.3.发现不同方程的转化方式,运用已有知识解决新问题.4.通过配方法的探究活动,培养勇于探索的良好学习习惯.感受数学的严谨性以及数学结论的确定性.学习过程一、设计问题,创设情境问题1:解一元二次方程的基本思路问题2:什么样的方程可用直接开平方法解?问题3:解方程:(1)(x-2)2-6=0;(2)(2x+3)2+1=0;(3)2(x-8)2=50;(4)x2+2x+1=5.问题4:(1)因式分解的完全
2、平方公式:(2)将下列各式配成完全平方式x2+2x+=(x+)2x2-8x+=(x-)2y2+5y+=(y+)2y2-12y+=(y-)2你发现了什么规律?二、信息交流,揭示规律1.试一试:与方程x2+2x+1=5比较,怎样解方程x2+2x-4=0?2.回顾解方程过程(见课件).3.想一想:以上解法中,为什么在方程两边加1?加其他数可以吗?如果不可以,说明理由.4.像这样通过配成完全平方形式的方法得到了一元二次方程的根,这种方法叫做配方法.总结:1.用配方法解一元二次方程的基本思路是什么?2.配方法解一元二次方程的一般步骤有哪些?注意:配方的关键是,方程两边同时加上一次项系数一半的平方.练习:
3、1.用配方法解方程x2+8x+7=0时方程可化为()A.(x-4)2=9B.(x+4)2=9C.(x-8)2=16D.(x+8)2=572.用配方法解方程x2+x=2时方程两边应同时加上.3.填空:配成完全平方式(1)x2-2x+=(x-1)2;(2)x2+6x+=(x+3)2;(3)x2-4x+4=(x-)2;(4)x2+36=(x+6)2.三、运用规律,解决问题【例题】 解下列方程:(1)x2-8x+1=0;(2)2x2+1=3x;(3)3x2-6x+4=0.四、变式训练,深化提高题组一:解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;(3)4x2-6x-3=
4、0;(4)3x2+6x-4=0.题组二:列方程解应用题如图,在一块长35 m,宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850 m2,道路的宽应为多少?五、反思小结,观点提炼本节课你学会了哪些新知识?1.配方法是指.2.用配方法解一元二次方程的一般步骤:.3.通过以上训练题目进一步体会转化的数学思想.参考答案一、设计问题,创设情境问题1:降次.问题2:x2=a或(x+m)2=a(a0)类型的方程.问题3:(1)x=6+2;(2)无;(3)x=13或3;(4)x=5-1问题4:(1)a2+2ab+b2=(a+b)2(2)11164545211614规律:常数项等于一次项系数一半的平方二、信息交流,揭示规律1.x2+2x=4x2+2x+1=4+13.为了构成完全平方式,不可以.总结:1.略2.略练习:1.B2.0.253.(1)1(2)9(3)2(4)12x三、运用规律,解决问题(1)x=415(2)x=1,0.5(3)无解四、变式训练,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海视觉艺术学院《电子商务理论与实践》2023-2024学年第一学期期末试卷
- 上海师范大学天华学院《数字电子技术C》2023-2024学年第一学期期末试卷
- 乡村改造项目报告范文
- 《DNA突变技术》课件
- 课题申报书:高中阶段职普协调发展的社会支持体系研究
- 课题申报书:高校思政课数字化转型的动力机制、障碍因素与行动路径研究
- 课题申报书:儿童社会善念的发展及其代际影响机制研究
- 课题申报书:俄罗斯舞蹈教育历史研究
- 教育机构培训选培员竞聘
- 统编版语文二年级上册小鲤鱼跳龙门 导读课公开课一等奖创新教学设计
- 法院特别委托书授权模板
- 品质年度总结及来年计划
- 学生体质健康存在的主要问题及改进措施
- 2024年执业药师资格继续教育定期考试题库(附含答案)
- 安徽工程大学《自然语言处理及应用》2022-2023学年第一学期期末试卷
- 2024年室内设计协议书
- 中储粮西安分公司招聘真题
- 大学人工智能期末考试题库
- 2024土方开挖工程合同范本
- 建筑幕墙工程检测知识考试题库500题(含答案)
- 新版第三类医疗器械分类目录
评论
0/150
提交评论