四边形的旋转与翻折.doc_第1页
四边形的旋转与翻折.doc_第2页
四边形的旋转与翻折.doc_第3页
四边形的旋转与翻折.doc_第4页
四边形的旋转与翻折.doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、四边形的旋转与翻折(一)正三角形类型在正 ABC中,P 为 ABC内一点,将 ABP绕 A 点按逆时针方向旋转 600,使得 AB与 AC重合。经过这样旋转变化,将图(1-1-a )中的 PA、PB、PC三条线段集中于图 (1-1-b )中的一个 PCP 中,此时 PAP 也为正三角形。例 1. 如图:(1-1 ):设 P是等边 ABC内的一点,PA=3,PB=4,PC=5, APB的度数是 _.(二)正方形类型在正方形 ABCD中, P 为正方形 ABCD内一点,将 ABP绕 B 点按顺时针方向旋转 900,使得 BA与 BC重合。经过旋转变化,将图( 2-1-a )中的 PA、PB、PC三

2、条线段集中于图(2-1-b )中的 CPP中,此时 BPP 为等腰直角三角形。例 2. 如图(2-1 ):P是正方形 ABCD内一点,点 P 到正方形的三个顶点 A、B、C 的距离分别为 PA=1,PB=2,PC=3。求此正方形 ABCD面积。 8(三)等腰直角三角形类型在等腰直角三角形 ABC中, C=Rt , P为 ABC 内一点,将 APC绕 C 点按逆时针方向旋转 900,使得 AC 与 BC重合。经过这样旋转变化,在图( 3-1-b )中的一个PCP为等腰直角三角形。例 3如图,在 ABC中, ACB=900,BC=AC,P 为 ABC内一点,且 PA=3,PB=1,PC=2。求 B

3、PC的度数。平移、旋转和翻折是几何变换中的三种基本变换。 所谓几何变换就是根据确定的法则, 对给定的图形 ( 或其一部分 ) 施行某种位置变化,然后在新的图形中分析有关图形之间的关系这类实体的特点是: 结论开放,注重考查学生的猜想、探索能力;便于与其它知识相联系, 解题灵活多变,能够考察学生分析问题和解决问题的能力 在这一理念的引导下,近几年中考加大了这方面的考察力度,特别是 2006 年中考,这一部分的分值比前两年大幅度提高。为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移, 旋转和翻折的知识来解决相关的问题, 下面以近几年中考题为例说明其解法,供大家参考。一平移、旋转平移:在平面内

4、,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移“一定的方向”称为平移方向,“一定的距离”称为平移距离。平移特征:图形平移时,图形中的每一点的平移方向都相同,平移距离都相等。ACC是等边三角形旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。例 1如图,将ABCA顺时针旋转60o后得到绕顶点ABC,且C为BC的中点,则CD: DB=()A1:2B1:C1:D1:3点评:本例考查灵活运用旋转前后两个图形是全等的

5、性质、等边三角形的判断和含 30 o角的直角三角形的性质的能力,解题的关键是发现二、翻折翻折:翻折是指把一个图形按某一直线翻折 180o后所形成的新的图形的变化。翻折特征:平面上的两个图形, 将其中一个图形沿着一条直线翻折过去, 如果它能够与另一个图形重合, 那么说这两个图形关于这条直线对称,这条直线就是对称轴。解这类题抓住翻折前后两个图形是全等的, 弄清翻折后不变的要素。翻折在三大图形运动中是比较重要的,考查得较多另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示, 这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。例 2如图,将矩形ABCDAEBAD

6、沿折叠,若 30,则 AED 等于()A30B 45C60D 75点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现 EAD=EAD, AED=AED点评:图形沿某条线折叠, 这条线就是对称轴, 利用轴对称的性质并借助方程的的知识就能较快得到计算结果。由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学, 图形运动的思想 ( 图形的旋转、翻折、平移三大运动 ) 都一一考查到了因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。平移与旋转实际上是一种全等变换, 由于具有可操作性,因而是考查同学们动手能力、 观察能力的好素材,

7、也就成了近几年中考试题中频繁出现的内容。 题型多以填空题、计算题呈现。 在解答此类问题时, 我们通常将其转换成全等求解。 根据变换的特征, 找到对应的全等形, 通过线段、角的转换达到求解的目的。例 1:如图,直角梯形ABCD中, ADBC,ABBC,AD=2,BC=3,将腰 CD以 D 为中心,逆时针旋转 90至 ED,连结 AE、CE,则 ADE的面积是()A1B2C3D不能确定点评:明确 ADE的边 AD上的高的概念不要误写成DE,作梯形高是常见的解题方法之一。变式题 1:如图,已知 ABC中 AB=AC,BAC=90,直角 EPF的顶点 P是 BC中点,两边 PE,PF分别交 AB、AC

8、于点 E、F,给出以下五个结论:( 1)AE=CF(2) APE=CPF(3) EPF是等腰直角三角形( 4)EF=AP(5)S 四边形 AEPF= S ABC 2,当 EPF在 ABC内绕顶点 P 旋转时(点 E 不与 A、B 重合)上述结论中始终正确的序号有例 2 D、E为 AB的中点,将 ABC沿线段 DE折叠,使点 A 落在点 F 处。若 B=50,则 BDF=点评:几何变换没有可套用的模式, 关键是同学们要善于多角度、多层次、多侧面地思考问题,观察问题、分析问题。变式题 2:如图,矩形纸片 ABCD,AB=2,ADB=30,将它沿对角线 BD折叠(使 ABD和 EBD落在同一平面内)

9、则 A、E 两点间的距离为旋转具有以下特征:( 1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;( 2)对应点到旋转中心的距离相等;( 3)对应角、对应线段相等;( 4)图形的形状和大小都不变。利用旋转的特征,可巧妙解决很多数学问题,如一. 求线段长 .例:如图,已知长方形ABCD的周长为 20,AB=4,点 E在 BC上,且 AEEF,AE=EF,求 CF的长。二. 求角的大小例: 如图,在等边 ABC中,点 E、D分别为 AB、BC上的两点,且 BE=CD,AD与 CE交于点 M,求 AME的大小。三. 进行几何推理例:如图,点 F 在正方形 ABCD的边 BC上,AE平分 DAF

10、,请说明 DE=AF-BF成立的理由 。数学思想是解数学题的精髓和重要的指导方法,在平移和旋转中的应用也相当的广泛, 一般可以归结为两种思想对称的思想和旋转的思想,具体的分析如下:1 、对称的思想:在平移、旋转、对称这些概念中,对称这一概念非常重要 . 它包括轴对称、旋转对称、中心对称. 对称是一种种要的思想方法, 在解题的应用非常广泛 . 例:观察图中所给的图案, 它可以看成由哪个较基本的图形经过哪些运动变换产生的?它是不是轴对称图形?旋转对称图形?中心对称图形?分析:这是一个涉及轴对称平移、旋转的综合性例子。解题思路主要通过直观观察取得。这个图案较基本的图形是正方形, 一个小正方形沿对角线

11、方向平移一个对角线长、 两个对角线长后得一正方形串,然后在串的轴线上找一点O为旋转中心,旋转三个90后得到题目中给出的图案,整个过程如图所示。这个图形是轴对称、旋转对称. 中心对称图形。方法探究:这里的较基本图形也可以看成线段。 一线段经平移、旋转后得一正方形,然后重复上面的过程。2、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决, 它是一种要的解题方法。例:如图,正方形 ABCD内一点 P,PAD PDA15,连结 PB、PC,请问: PBC是等边三角形吗?为什么?1如图, ABC是等腰直角三角形, BC为斜边,

12、将 ABP绕点 A 逆时针旋转后, 能与APACP重合,如果 AP=3,请求出 PP的PCB长2如图,在 ABC中, BAC=120,以 BC为边向形外ECA作等边三角形 BCD,ABD绕点 D按顺时针方向旋转 60 后得到 ECD,若 AB=3,AC=2,求 BAD的度数与 AD的长3如图,点 O 是等边 ABC 内一点, AOB=110, BOC=将 BOC绕点 C按顺时针方向旋转60得 ADC,连接 OD( 1)试说明: COD是等边三角形;( 2)当 =150时,试判断 AOD的形状,并说明理由;(3)探究:当为多少度时, AOD是等腰三角形?4. 如图在 ABCD中, E、F 分别是

13、 AD、BC边上的任意两点, S APB20cm2 , S CDQ30cm2 ,则S 阴影AED=。PQBFC5. 如图,已知在 ABCD中, E、F 是对角线 BD上的两点,BEDF,点 G、H分别在 BA和 DC的延长线上,且 AGCH,连接 GE、EH、HF、FG求证:四边形 GEHF是平行四边形6. 如图,在四边形 ABCD中,AB=CD,点 E、F 分别是 BC、AD的中点,连接EF 并延长,分别与BA、CD的延长线交于点 M、N,则 BME= CNE( 不需证明)小明的思路是: 在图 1 中,连接 BD,取 BD的中点 H,连接 HE、HF,根据三角形中位线定理,证明HE=HF,从

14、而 1=2,再利用平行线性质,可证得 BME=CNE( 1):如图 2,在四边形 ADBC中,AB与 CD相交于点O,AB=CD,E、F 分别是 BC、AD的中点,连接 EF,分别交DC、AB于点 M、N,判断 OMN的形状,请直接写出结论;(2):如图 3,在 ABC中, ACAB,D点在 AC上,AB=CD,E、F 分别是 BC、AD的中点,连接 EF并延长,与BA的延长线交于点 G,若 EFC=60,连接 GD,判断 AGD 的形状并证明7. 如图,在 ABC中, AB=AC,AD是 ABC的角平分线,点 O位 AB的中点,连接 DO并延长到点 E,使 OE=OD,连接 AE、BE(1)

15、求证:四边形AEBD是矩形;( 2)当 ABC满足什么条件时,矩形 AEBD是正方形,并说明理由8. 如图,平行四边形 ABCD 中, AB AC , AB 1, BC 5 对角线 AC,BD 相交于点 O ,将直线 AC 绕点 O 顺时针旋转,分别交BC,AD 于点 E,F ( 1)证明:当旋转角为 90o 时,四边形 ABEF 是平行四边形;( 2)试说明在旋转过程中,线段 AF 与 EC 总保持相等;( 3)在旋转过程中,四边形 BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点 O顺时针旋转的度数AFDOBEC9. 在 ABC中,AB=AC,BAC=(060),将线段BC绕点 B 按逆时针方向旋转 60得到线段 BD。(1)如图1,直接写出 ABD 的大小(用含 的式子表示);( 2)如图2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论