基因毒性杂质(genotoxic_第1页
基因毒性杂质(genotoxic_第2页
基因毒性杂质(genotoxic_第3页
基因毒性杂质(genotoxic_第4页
基因毒性杂质(genotoxic_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基因毒性杂质 (Genotoxic Impurity) p欧盟公布的药品评估十大缺陷中,Top 4为基因毒性杂质。 要求对杂质的潜在基因毒性杂质进行具体的讨论,并作为 总体杂质讨论的一部分。 p常见的基因毒性物质: p苯并芘、黄曲霉素、亚硝胺 p化疗药物的不良反应是由化疗药物对正常细胞的基因毒性 所致,如顺铂、卡铂、氟尿嘧啶等 p氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;特 别敏感患者,仅使用一次或短期使用,就出现了听力受损。 研究表明,这些患者的一个基因上有一点(mtl555G) 与别人不同,这使他们对氨基糖甙类药物耳毒性的易感性 大大增加。 目录 p基因毒性杂质定义及风险基因毒性杂质

2、定义及风险 p可接受风险的摄入量(可接受风险的摄入量(TTC阈值)阈值) pEMA对基因毒性杂质的指导要求对基因毒性杂质的指导要求 p判断是否为基因毒性杂质判断是否为基因毒性杂质 p决策树决策树 pQ&A 参考法规 pEMA:2006年率先颁布基因毒性杂质限度指南,于 2007年1月1日证实实施。该指南为限制活性物质中的基 因毒性杂质提供了解决问题的框架和具体做法 pICH:2006年,Q3A(R2)step4 vision“新原料药中的杂 质” pFDA:2008年12月,Guidance for industry- Genotoxic and carcinogenic impurities

3、 in Drug substances and products: Recommended approaches.介绍了欧盟和ICH的控制方法。原料药和制 剂中的基因毒性杂质生成的预防办法;上市申请和临床研 究申请的可接受限度。 定义 p基因毒性杂质:基因毒性杂质:是指能直接或间接损伤细胞DNA,产生致 突变和致癌作用的物质。 p常用缩写 1、PGLs (potentially genotoxic impurities有潜在基因 毒性的杂质) 2、GTLs (genotoxic impurities基因毒性杂质) p风险:(体内)基因毒性物质在任何摄入量水平上对DNA 都有潜在的破坏性,这种破

4、坏可能导致肿瘤的产生。但不 能说“不存在明显的阀值,或是任何的摄入水平都具有致 癌的风险”。 p新药合成、原料纯化、储存运输(与包装物接触)等过程 都可能产生基因毒性杂质 可接受风险的摄入量可接受风险的摄入量 p对于那些可以与DNA进行反应的化合物,由于在 较低剂量时机体自身保护机制可以有效的运行, 按照摄入量由高到低所造成的影响进行线性推断 是很困难的。目前,对于一个给定诱变剂,很难 从实验方面证实它的基因毒性存在一个阈值。 p特别是对于某些化合物,它们可与非DNA靶点进 行反应,或一些潜在的突变剂,在与关键靶点结 合之前就失去了毒性。由于缺乏支持基因毒性阈 值存在的有力证据,而使得我们很难

5、界定一个安 全的服用量。 可接受风险的摄入量可接受风险的摄入量 是否可以做 个这样的试 验:剂量从 低到高,对 基因毒性杂 质影响性进 行线性推断? 引入一个 新观点: 确定一个 可接受其可接受其 风险的摄风险的摄 入量入量 生物系统的纠错功 能使试验不具备可 行性。 TTC p可接受其风险的摄入量一般被定义为Threshold of Toxicological Concern (TTC)。 p具体含义为:具体含义为:1.5g/天的天的TTC值。值。 p相当于人每天摄入1.5g的基因毒性杂质,被认为对于大 多数药品来说是可以接受的风险(使人一生的致癌风险小 于100000分之一,现实生活中人一

6、生得癌症的概率四分 之一)。按照这个阈值,可以根据预期的每日摄入量计算 出活性药物中可接受的杂质水平。 pTTC是一个风险管理工具,它使用的是概率方法。所以 TTC不能被理解为绝对无风险的保障。 TTC p意思是:假如有一个基因毒性杂质,并且我们对 它的毒性大小不了解,如果它的每日摄入量低于 TTC值,那么,该基因毒性杂质的致癌风险将不 会高于100000分之一的概率。 p某些特定情况,TTC值高于1.5g/day也是可以 接受的。比如药物的短期接触,即治疗某些声明 预期在5年以下的某些严重疾病,或者这种杂质是 一种已知物质,人类在其他方式上对它的摄入量 会更高(比如在食品上)。这个需要根据实

7、际情 况再进行推算。 EMA对基因毒性杂质分类 pEMA对基因毒性杂质的指导原则适用于上市申请 和临床研究。 p一、有足够实验数据的阈值一、有足够实验数据的阈值 p对于有足够的(实验性的)数据来支持阈值界定 的基因毒性杂质:可参考“Q3C Note for guidance on impurities: Residual Solvents” 中2级溶剂的规定,计算出了一个“允许的日摄入 量(PDEpermitted daily exposure)” p二、无足够实验依据的阈值二、无足够实验依据的阈值 p没有足够的(实验性的)证据来支持阈值界定的 基因毒性杂质的可接受剂量评价应该包括药学和 毒理

8、学的评价。一般来说,如果不可能避免毒性, 那么药学的评价措施应该以尽可能低的控制水平 为指导。 药学研究 p应根据现有处方和生产技术,提供生产方法的合 理性。申请人应该指明涉及到的所有具有基因毒 性或有致癌性的化学物质,如所用试剂、中间体、 副产品等。实际生产中应尽量避免使用该类物质。 p如果在合成路线、起始物料方面没有更好选择, 则需要提供一个正当的理由。即物质中能引起基 因毒性和致癌性的结构部分在化学合成路线上是 不可避免的。 p加入基因毒性杂质被认为是不可避免的,那么应 该采取技术手段尽可能的减少基因毒性杂质在产 品中的含量,使其符合安全的需要或使其降低到 一个合理的水平。对于活性中间体

9、、反应物、以 及其它化合物的化学稳定性都应进行评估。 p应该有合理的分析方法去检测和量化这些杂质的 残留量。 毒理学研究 p为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。 p但是这些方法都需要有足够的长期致癌性研究数 据。 pTTC用于计算未做研究的化学物质的接触量,这些化 学物质不会有明显的致癌性或者其他毒性。 pTTC理论不可以应用于那些毒性数据(长期研究)充 分的致癌物质,也不可以做高风险毒性物质的风

10、险 评价。 )/( )/( )(on daygdose dayugTTC ppmLimitcentrationC 用药时间与毒性杂质限度 含有多个基因毒性杂质的评估 pEMA: 结构不同的,单个杂质的限度应小于1.5ug/day. 结构相似的,总的基因杂质限度定为1.5ug/day. pFDA(和EMA类似): 单个杂质造成的癌症风险机率应该小于100000分 之一; 有相同作用机制的结构相似的杂质,其含量总和 应该参考TTC值进行评估。 判断是否为基因毒性杂质 p通过Carcinogenic potency database (CPDB) 数据库查询,数据库中现有1574种致癌物质的列 表。

11、链接 /chemnameind ex.html ,还可查询到关于基因毒性方面研究的 出版物。 判断是否为基因毒性杂质 p可通过文献、计算机毒理学进行评价; p常通过MDL-QSAR, MC4PC, Derek for Windows软件来评价是否具有structural alert,FDA、EMEA等官方机构也采取此 类软件用来判断。 pDerek for Windows数据库:可以预算某个化 学药物对人类(或其他哺乳动物)是否具有毒性, 在世界范围内已被许多制药公司,化学公司和学 术研究机构所采用。可提供以下4种信息。 n在没有实验数据的情

12、况下,提供某个化学药物 潜在的毒性信息; n建立最值得关注的潜在有毒物质; n提供降低药物毒性的化学修饰方法 n提供毒性预测依据 基因毒性杂质磺酸盐的风险评估 pEMEA/44714/2008 p临床研究发现甲磺酸酯的DNA 烷基化作用会导致 诱变效应 ,其中甲磺酸甲酯和甲磺酸乙酯已有这 方面报导,因此有理由怀疑其它低分子量磺酸 (如对甲苯磺酸)的烷基酯可能也存在着类似的 毒性影响。尽管无数据表明这些酯对人的毒性影 响,然后依然有上述基因毒性物质以杂质的形式 存在于含磺酸酯类药物活性成分的药品中的潜在 风险。 p甲磺酸烷基酯,如甲磺酸甲酯(MMS)和甲磺酸 乙酯(EMS),是甲磺酸与甲醇,乙醇

13、,或其它 低级醇形成的酯。特别是在以甲磺酸盐或甲磺酸 酯形式存在的药物活性成分中或其合成过程中用 到了甲磺酸的药物活性成分中,甲磺酸烷基酯会 被视为潜在杂质。 p在以羟乙基磺酸盐,苯磺酸盐和对甲苯磺酸盐形 式存在的药物活性成分中也会发现类似的磺酸烷 基酯或芳基酯污染。需说明出现这些污染的风险。 p 药物活性成分的生产是否涉及到在甲磺酸(或羟乙基磺 酸,苯磺酸,对甲苯磺酸)或相应的酰氯存在的情况下, 使用了低级脂肪酯,如甲醇,乙醇,正丙醇或异丙醇的情 况?如果是这种情况的话,甲磺酸烷基酯或类似苯磺酯烷 基酯和对甲苯磺酸烷基酯的形成可能性是否已被降至最低? 是否存在有效的精制步骤? 设备(特别是接

14、触到磺酸试剂的设备)的清洗程序是 否涉及到低级脂肪醇的使用? 是否有适宜的质量标准和已验证的分析方法可以证实 药物活性成分中的磺酸烷酯或磺酸芳基酯杂质处于TTC以 下? p是否检查了起始物料,如甲磺酸盐(苯磺酸盐, 对甲苯磺酸盐,羟乙基磺酸),中的烷基磺酸酯 或芳基磺酸酯杂质(如甲磺酸中的EMS 和MMS) 及相应的酰氯?是否有这些杂质的适宜标准和验 证过的方法? p当被磺酸酯或相关物质所污染了的磺酸作为起始 物料用于药物活性成分时,是否能保证药物活性 成分中潜在基因毒性杂质不超过其TTC值?应当 要考虑各种烷基或芳基取代磺酸酯杂质的累加风 险。 p如在药物活性成分生产的最后一步合成步骤用到了

15、磺 酸衍生物,应将其纳入风险分析。 是否对回收溶剂中磺酸酯类杂质的富集和残留进行了 控制? 是否能排除以甲磺酸盐,羟乙基磺酸盐,对甲苯磺酸 盐或苯磺酸盐形式存在的药物的活性成分,或其相关制剂, 在储存过程中形成烷基或芳基磺酸酯? 是否能排除以甲磺酸盐,羟乙基磺酸盐,对甲苯磺酸 盐或苯磺酸盐形式存在的药物活性成分在制成最终制剂的 过程中形成烷基或芳基磺酸酯,如在制粒过程中使用了醇? 是否有足够灵敏的的方法可以检测到制剂中的(处于TTC 水平的)这些杂质? 基因毒性杂质卤代烃的风险评估 p有数据表明氯乙烷、氯甲烷为基因毒性杂质,因 此有理由怀疑其他低分子卤代烃类也有类似的作 用。在生产中应该对其进

16、行相应的控制。 p在氨基物盐酸盐使用醇类溶剂精制的时候,基本 都会产生卤代烃。 p产生的条件和温度、水分、浓度、时间等有关系。 p对于控制低级卤代烃的方法可以参考控制甲磺酸 酯的相关建议。 判断是否为基因毒性杂质 p高基因毒性致癌物: pN-nitroso (亚硝基) pazoxy(氧化偶氮基) paflatoxin-like compound(黄曲霉素类) p它们不能用TTC值的方法来进行评价。对这些种类的物质 进行风险评价需要特殊的compound-specific 毒性数据。 p可能在低于TTC值会有很强的毒性。 N OR 序号基因毒性杂质名称杂质限度产品名称 1保护基溴化物15ppm氯

17、沙坦钾 2邻氨基甲苯7.5ppm托拉塞米 3间氨基甲苯7.5ppm托拉塞米 4对氨基甲苯7.5ppm托拉塞米 5邻硝基甲苯7.5ppm托拉塞米 6叠氮酸10ppm坎地沙坦酯 7叠氮酸10ppm缬沙坦 8溴代异丙烷15ppm氯吡格雷氢溴酸盐 9联苯溴化物3.4ppm缬沙坦 10联苯溴化物四氮唑4ppm缬沙坦 115-氰基苯酞25ppm西酞普兰氢溴酸盐 125-氨基苯酞25ppm西酞普兰氢溴酸盐 13硝基化合物25ppm西酞普兰氢溴酸盐 14氨基化合物25ppm西酞普兰氢溴酸盐 15硫脲30ppm盐酸吡格列酮 16对氟硝基苯30ppm盐酸吡格列酮 17硝基吡格30ppm盐酸吡格列酮 18酞嗪二酮0

18、.04%RP-氯沙坦钾 19联苯溴化物10ppmRP-氯沙坦钾 20二甲海因0.05%RP-氯沙坦钾 21保护基二溴物15ppmRP-氯沙坦钾 22氯沙坦钾二氯物15ppmRP-氯沙坦钾 23二溴二甲海因15ppm氯沙坦钾保护基溴化物 24联苯溴化物10ppm氯沙坦钾 25联苯溴化物四氮唑12ppm氯沙坦钾 26游离肼10ppmRP-氯沙坦钾 27叠氮酸15ppm氯沙坦钾 28四丁基溴化铵25ppm盐酸帕罗西汀 29叠氮酸10ppm厄贝沙坦 30对甲苯磺酸异丙酯8ppm氯沙坦钾 31溴离子229ppm艾他培南 32对甲苯磺酸乙酯25ppm西酞普兰 33氟苯15ppm西酞普兰 34氯丙胺盐酸盐1

19、20ppm西酞普兰 35对氟溴苯50ppm西酞普兰 36甲磺酸乙酯75ppmS-西酞普兰 38N-甲基吡咯烷酮53ppm厄贝沙坦 39N,N-二甲基苯胺2ppm奎硫平 40对甲苯磺酸乙酯37.5ppm奎那普利 41对甲苯磺酸乙酯150ppm雷米普利 42对甲苯磺酸乙酯37.5ppm依那普利 43异亚丙基丙酮100ppm罗匹尼罗 44间氯苯胺15ppm氢氯噻嗪 45甲磺酸甲酯2ppm依普洛沙坦甲磺酸盐 46甲磺酸乙酯2ppm依普洛沙坦甲磺酸盐 473-硝基-2-叔丁氧甲酰氨基苯甲酸乙酯47ppm坎地沙坦酯 482-氰基-4-溴甲基联苯47ppm坎地沙坦酯 492-(2-氰基联苯基)-4-基甲基氧

20、基-3-硝基苯甲酸乙酯47ppm坎地沙坦酯 503-硝基邻苯二甲酸47ppm坎地沙坦酯 51邻苯二胺盐酸盐5ppm替米沙坦 52邻氨硝基苯5ppm替米沙坦 53邻氟苯胺5ppm替米沙坦 54氯沙坦钾二氯代物15ppmRP-氯沙坦钾 55保护基溴化物15ppmRP-氯沙坦钾 Group1:Aromatic Groups(芳香族化合物): N A OH N-Hydroxyaryls N-羟基苯胺 N A A O N-Acylated aminorryls N-酰化氨基苯 N O + _ Aza-aryl N-oxides 氮杂芳基N-氧化物 N A A Aminoaryls and alkylat

21、ed aminoaryls 芳香胺和烷基取代的芳酰胺 Group 2:Alkyl and Aryl Groups(烷烃和环烷烃类化合物) AH O Aldehydes 醛 N AA OH N-Methylols N-亚甲基醇 N AA NO N-Nitrosamines N-亚硝基胺 A NO2 Nitro compounds 硝基化合物 O A NH2 O Carbamates 氨基甲酸类 O AA Epoxides 环氧丙烷 H N AA Aziridines 氮丙啶类 OC O (S) Propiolactones 环丙酯 N Halogen (S) N or S Mustards 卤代

22、乙胺 NN R AA A Hydrazines and azo Compounds 肼和偶氮化合物 Group 3:Heteroatomic Groups(含杂原子化合物) EWG Michale-reactive Acceptors 迈克尔加成反应受体 P O OR S O OR Alkyl Esetrs of Phosphonates or Sulfonates 膦酸酯或者磺酸酯 Halogen Halo-alkenes 卤代烯烃 A Halogen Primary Halides 烷烃和环烷烃卤代物 致癌警示结构 EMEA关于基因毒性杂质的决策树 基因毒性杂质 有充分的证据用于评价 基因毒性的阈值 由实验数据得到毒性情 况,如Ames检测阳性 计算PDE是否为安全 的吸入量 控制在安全限 度以下 不用采取任何 措施 基因毒性杂质不能避 免? 使用其他物料取代 杂质残留是否合理 摄入剂量是否超过 TTC? 摄入1.5ug/day的量 是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论