版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 Chapter 5 The Discrete-time Fourier Transform Yu Zhuliang College of Automation Science and Engineering South China University of Technology 2 3 Determination of the Fourier Series Representation of a Continous-time Periopdic Signal Periodic vs. Discrete 4 Fourier Series Representation of Discrete
2、- time Periodic Signals Periodic vs. Discrete 5 Fourier Series Representation of Discrete- time Periodic Signals nImportant property nSo we select k from 0 to N-1 nIt is sometimes convenient to think of ak as a sequence define for all values of k, but where only N successive elements in the sequence
3、 will be used in the Fourier Series representation. 6 Representation of aperiodic signals: The continous-time Fourier transform Fourier Transform Pair 7 The Fourier Transform for Periodic Signals 8 9 Question? nHow do we get the Fourier Transform for aperiodic continuous-time signal? 10 Representati
4、on of aperiodic signals: The continous-time Fourier transform nOutside the range, x(t)=0 11 Representation of aperiodic signals: The continous-time Fourier transform nWe have 12 Representation of aperiodic signals: The continous-time Fourier transform nSince nWhen T approaches infinity 13 The proble
5、m we study today nSimilar to the derivation of Fourier Transform of continous-time signal, what is the Fourier Transform of a discrete-time signal? 14 Representation of Aperiodic Signals nN approaches infinity, 15 Representation of Aperiodic Signals 16 Representation of Aperiodic Signals ? ? 17 Repr
6、esentation of Aperiodic Signals nLets define nWe have 18 Representation of Aperiodic Signals 19 Representation of Aperiodic Signals 20 Representation of Aperiodic Signals Discrete-time Fourier Transform Pair 21 Representation of Aperiodic Signals Finite integral interval Periodicity 22 nFourier Tran
7、sform of aperiodic continuous- time signal does not have periodicity. nWhy Fourier Transform of Discrete-time signal has periodicity? 23 Periodicity 24 Example of Discrete-time Fourier Transforms 25 26 Example of Discrete-time Fourier Transforms 27 28 Example of Discrete-time Fourier Transforms 29 C
8、onvergence of Discrete-time Fourier Transform nSince the synthesis equation involves integral over finite interval, there are generally no convergence problem. 30 Fourier Transform for Periodic Signals For continuous-time periodic signal 31 Fourier Transform for Periodic Signals 32 33 Fourier Transf
9、orm for Periodic Signals 34 The Fourier Transform for Periodic Signals (Comparison) 35 Fourier Transform for Periodic Signals nExample 5.5 36 Fourier Transform for Periodic Signals nExample 5.6 37 Properties of the Discrete-time Fourier Transform nPeriodicity of DTFT 38 Properties of the Discrete-ti
10、me Fourier Transform nLinearity of DTFT 39 Properties of the Discrete-time Fourier Transform nTime shifting and frequency shifting 40 Properties of the Discrete-time Fourier Transform nApplication () j hp He 41 Properties of the Discrete-time Fourier Transform nConjugation and Conjugate Symmetry 42
11、Properties of the Discrete-time Fourier Transform nDifferencing and Accumulation 43 Properties of the Discrete-time Fourier Transform nTime Reversal 44 Properties of the Discrete-time Fourier Transform nTime Expansion 45 46 Properties of the Discrete-time Fourier Transform nDifferentiation in Freque
12、ncy 47 Properties of the Discrete-time Fourier Transform nParsevals Relation 10.31 48 49 Properties of the Discrete-time Fourier Transform nConvolution Property 50 Properties of the Discrete-time Fourier Transform nExample 5.13 51 Properties of the Discrete-time Fourier Transform nExample 5.14 52 Pr
13、operties of the Discrete-time Fourier Transform nMultiplication Property 53 54 Determination of the Fourier Series Representation of a Continous-time Periopdic Signal Periodic vs. Discrete 55 Fourier Series Representation of Discrete- time Periodic Signals Periodic vs. Discrete 56 Fourier Series Rep
14、resentation of Discrete- time Periodic Signals nImportant property nSo we select k from 0 to N-1 nIt is sometimes convenient to think of ak as a sequence define for all values of k, but where only N successive elements in the sequence will be used in the Fourier Series representation. 57 Representat
15、ion of aperiodic signals: The continous-time Fourier transform Fourier Transform Pair 58 The Fourier Transform for Periodic Signals 59 60 Representation of Aperiodic Signals Discrete-time Fourier Transform Pair 61 Representation of Aperiodic Signals Finite integral interval Periodicity 62 Fourier Transform for Periodic Signals 63 The Fourier Transform for Periodic Signals (Comparison) 64 Properties of the Discrete-time Fourier Transform nSummary in Table 5.1 nDTFT of S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共享服务合同的创新发展趋势展望
- 江苏省江阴市璜土中学高中地理 4.1区域农业发展-以我国东北地区为例教案2 新人教版必修3
- 2024-2025学年高中语文 第四单元 有无相生教案6 新人教版选修《先秦诸子选读》
- 九年级化学下册 第12单元 化学与生活教案 (新版)新人教版
- 2024-2025学年高中历史下学期第13周 罗斯福新政教学设计
- 2024六年级语文下册 第六单元 古诗词诵读 5 江上渔者教学设计+教案+素材 新人教版
- 2024-2025学年上海市浦东新区七年级上英语期中试卷(含答案和音频)
- 雨花石音乐课件
- 发现规律 课件
- 剖宫产手术课件
- 课本剧哈姆雷特剧本
- 黑变病的护理查房
- 2024年度家庭医生签约服务培训课件
- 医院陪护服务投标方案(技术方案)
- 专病数据模块及数据库建设需求
- 一老一小交通安全宣传
- 城市社区居家养老服务体系建设研究-以我国椒江区、田家庵区为例的开题报告
- 重点部位感染与预防控制
- 高校快递包装回收现状分析及对策-以广东省中山市三大高校为例
- 初创企业财务管理计划书
- 新民事诉讼书范文追债通用21篇
评论
0/150
提交评论