版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解析几何公式大全解析几何中的基本公式1、 两点间距离:若,则 2、 平行线间距离:若 则: 注意点:x,y对应项系数应相等。3、 点到直线的距离:则P到l的距离为:4、 直线与圆锥曲线相交的弦长公式: 消y:,务必注意若l与曲线交于A 则:5、 若A,P(x,y)。P在直线AB上,且P分有向线段AB所成的比为, 则 ,特别地:=1时,P为AB中点且变形后:6、 若直线l1的斜率为k1,直线l2的斜率为k2,则l1到l2的角为适用范围:k1,k2都存在且k1k21 , 若l1与l2的夹角为,则,注意:(1)l1到l2的角,指从l1按逆时针方向旋转到l2所成的角,范围 l1到l2的夹角:指 l1、
2、l2相交所成的锐角或直角。 (2)l1l2时,夹角、到角=。 (3)当l1与l2中有一条不存在斜率时,画图,求到角或夹角。7、 (1)倾斜角,;(2);(3)直线l与平面;(4)l1与l2的夹角为,其中l1/l2时夹角=0;(5)二面角;(6)l1到l2的角8、 直线的倾斜角与斜率k的关系a) 每一条直线都有倾斜角,但不一定有斜率。b) 若直线存在斜率k,而倾斜角为,则k=tan。 9、 直线l1与直线l2的的平行与垂直(1)若l1,l2均存在斜率且不重合:l1/l2 k1=k2l1l2 k1k2=1 (2)若 若A1、A2、B1、B2都不为零 l1/l2; l1l2 A1A2+B1B2=0;
3、 l1与l2相交 l1与l2重合;注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。10、 直线方程的五种形式名称 方程 注意点斜截式: y=kx+b 应分斜率不存在 斜率存在点斜式: (1)斜率不存在: (2)斜率存在时为两点式: 截距式: 其中l交x轴于,交y轴于当直线l在坐标轴上,截距相等时应分: (1)截距=0 设y=kx (2)截距= 设 即x+y=一般式: (其中A、B不同时为零)10、确定圆需三个独立的条件圆的方程 (1)标准方程: , 。 (2)一般方程:,( 11、直线与圆的位置关系有三种若, 12、两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,
4、r2, 外离 外切 相交 内切 内含13、圆锥曲线定义、标准方程及性质(一)椭圆定义:若F1,F2是两定点,P为动点,且 (为常数)则P点的轨迹是椭圆。定义:若F1为定点,l为定直线,动点P到F1的距离与到定直线l的距离之比为常数e(0e1),则动点P的轨迹是双曲线。(二)图形: (三)性质 方程: 定义域:; 值域为R;实轴长=,虚轴长=2b焦距:2c 准线方程:焦半径:,;注意:(1)图中线段的几何特征:, 顶点到准线的距离:;焦点到准线的距离:两准线间的距离= (2)若双曲线方程为渐近线方程: 若渐近线方程为双曲线可设为 若双曲线与有公共渐近线,可设为(,焦点在x轴上,焦点在y轴上) (3)特别地当离心率两渐近线互相垂直,分别为y=,此时双曲线为等轴双曲线,可设为; (4)注意中结合定义与余弦定理,将有关线段、和角结合起来。 (5)完成当焦点在y轴上时,标准方程及相应性质。二、抛物线 (一)定义:到定点F与定直线l的距离相等的点的轨迹是抛物线。即:到定点F的距离与到定直线l的距离之比是常数e(e=1)。 (二)图形: (三)性质:方程:; 焦点: ,通径; 准线: ; 焦半径:过焦点弦长 注意:(1)几何特征:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考物理复习专题1物理学史估测题课件
- 冀少版八年级生物上册第三单元第一节种子萌发的过程课件
- 幼儿印染课件教学课件
- 第四节区域经济联系教案
- 《建筑材料》教案
- 住宅小区电梯安装招标细则须知
- 绵阳市羽毛球馆租赁合同
- 印刷厂操作员聘用协议
- 教育资源共享办法
- 福州市停车场突发事件应急预案
- 初中美术八年级上册《静物画有声》
- 大学生健康人格与心理健康PPT课件
- 物业服务有限公司物业承接查验工作手册
- 小型水电站改造设计方案
- 师生申诉调解机制
- 有限空间安全操作责任协议书(3页)
- 趣味数学—数阵图与幻方
- 网格化管理架构图新
- 石油修井行业套损井检测与修复技术
- 座椅设计参数及其对舒适性的影响
- (完整word版)租房合同(简单版).doc
评论
0/150
提交评论