版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 专题训练系列之三角形经典三角形专题训练知识点梳理 考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类.三角形(按边分)三角形(按角分) 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段三角形的中线:顶点与对边中点的连线,三条中线交点叫重心三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和
2、定理及性质 定理:三角形的内角和等于180. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。7、多边形的外角和恒为3608、多边形及多边形的对角线正多边形:各个角都相等,各条边都相等的多边形叫做正多边形凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。多边形的对角线的条数:A.从n边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。B.n 边形共有条对角线。9、边
3、形的内角和公式及外角和多边形的内角和等于(n-2)180(n3)。多边形的外角和等于360。10、平面镶嵌及平面镶嵌的条件。平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360。与三角形有关的角、多边形及其内角和例1 一个三角形的两边长分别为2和9,第三边为奇数,则此三角形的周长是多少?(三边关系:判定能否成三角形;求线段的取值范围;证明线段的不等关系)针对性练习:若一个等腰三角形的周长为17cm,一边长为3cm ,则它的另一边长是 。例2如图,已知中, 的角平分线BD,CE相交于点 O,
4、且求。(内角和定理)OADCBAE例3 如图,BP平分FBC,CP平分ECB,A=40求BPC的度数。ACEPB4213F7.2.1 三角形的内角1.三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则这个三角形各角的度数为( )A45、45、90B30、60、90C25、25、130D36、72、722.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )A.60,90,75 B.48,72,60C.48,32,38 D.40,50,903.已知ABC中,A=2(B+C),则A的度数为( )A.100 B.120 C.140 D.1
5、604.在ABC中,A=B=C,则此三角形是( )A.锐角三角形B.直角三角形 C.钝角三角形 D.等腰三角形7.2.2 三角形的外角5.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定6.如果三角形的一个外角和与它不相邻的两个内角的和为180,那么与这个外角相邻的内角的度数为( )A.30 B.60 C.90 D.1207.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90 B.110 C.100 D.1208.已知等腰三角形的一个外角是120,则它是( )A.等腰直角三角形; B.一般的等
6、腰三角形; C.等边三角形; D.等腰钝角三角形9.如图1所示,若A=32,B=45,C=38,则DFE等于( )A.120 B.115 C.110 D.105(1)7.3 多边形及其内角和10.一个多边形的外角中,钝角的个数不可能是( )A.1个 B.2个 C.3个 D.4个11.不能作为正多边形的内角的度数的是( )A.120 B.(128) C.144 D.14512.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形 B.十二边形 C.十一边形 D.十边形13.若一个多边形共有十四条对角线,则它是( )A.六边形 B.七边形 C.八边形 D.九边形7.4 课
7、题学习 镶嵌14.用形状、大小完全相同的图形不能镶嵌成平面图案的是( )A.等腰三角形 B.正方形 C.正五边形 D.正六边形15.下列图形中,能镶嵌成平面图案的是( )A.正六边形 B.正七边形 C.正八边形 D.正九边形例1.如图,求A+C+3+F的度数。例2已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数。例5如图,AP平分BAC交BC于点P,ABC=90,且PB=3cm,AC=8cm,则APC的面积是 cm2考点二、全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相
8、等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折180
9、,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60。2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且
10、等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。考点四、直角三角形 1、直角三角形的两个锐角互余2、在直角三角形中,30角所对的直角边等于斜边的一半。3、直角三角形斜边上的中线等于斜边的一半 4直角三角形两
11、直角边a,b的平方和等于斜边c的平方,即5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90 CDAB 6、常用关系式由三角形面积公式可得:ABCD=ACBC经典例题解析:例1.如图,BP平分FBC,CP平分ECB,A=40求BPC的度数。 分析:可以利用三角形外角的性质及三角形的内角和求解。解:1= 例2.如图,求A+C+3+F的度数。分析:由已知B=30,G=80,BDF=130,利用四边形内角和,求出3的度数,再计算要求的值。解:四边形内角和为(4-2)180=3603=360-30-80-130=120又
12、A C F是三角形的内角 A+C+F+3=180+120=300例3已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数。分析:每一个外角的度数都是其相邻内角度数的,而每个外角与其相邻的内角的度数之和为180。解:设此多边形的外角为x,则内角的度数为x 例4.用正三角形、正方形和正六边形能否进行镶嵌? 分析:可以进行镶嵌的条件是:一个顶点处各个内角和为360 解:正三角形的内角为 正方形的内角为正六边形的内角为 可以镶嵌。一个顶点处有1个正三角形、2个正方形和1个正六边形。例5.如图,在ABC中,ACB=60,BAC=75,ADBC于D,BEAC于E,AD与BE交于H,则CHD=
13、解:在ABC中,三边的高交于一点,所以CFAB,BAC=75,且CFAB,ACF=15,ACB=60,BCF=45在CDH中,三内角之和为180,CHD=45,故答案为CHD=45点评:考查三角形中,三条边的高交于一点,且内角和为180例6如图,AD、AM、AH分别ABC的角平分线、中线和高(1)因为AD是ABC的角平分线,所以 = = 1/2 ;(2)因为AM是ABC的中线,所以 = = ;(3)因为AH是ABC的高,所以 = =90分析:(1)根据三角形角平分线的定义知:角平分线平分该角;(2)根据三角形的中线的定义知:中线平分该中线所在的线段;(3)根据三角形的高的定义知,高与高所在的直
14、线垂直解答:解:(1)AD是ABC的角平分线,BAD=CAD=1/2BAC;(2)AM是ABC的中线,BM=CM=1/2BC;(3)AH是ABC的高,AHBC,AHB=AHC=90;故答案是:(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC例8如图,AP平分BAC交BC于点P,ABC=90,且PB=3cm,AC=8cm,则APC的面积是 cm2解:AP平分BAC交BC于点P,ABC=90,PB=3cm,点P到AC的距离等于3,AC=8cm,APC的面积=832=12cm2例9. 已知:点P是等边ABC内的一点,BPC150,PB2,PC3,求PA的长。分析:将BAP绕
15、点B顺时针方向旋转60至BCD,即可证得BPD为等边三角形,PCD为直角三角形。解:BCBA,将BAP绕点B顺时针方向旋转60,使BA与BC重合,得BCD,连结PD。BDBP2,PADC。BPD是等边三角形。BPD60。DPCBPCBPD1506090。DCPADC。例10. 两个全等的含30,60角的三角板ADE和ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。试判断EMC是什么样的三角形,并说明理由。分析:判断一个三角形的形状,可以结合所给出的图形作出假设,或许是等腰三角形。这样就可以转化为另一个问题:尝试去证明EMMC,要证线段相等可以寻找全等三
16、角形来解决,然而图中没有形状大小一样的两个三角形。这时思考的问题就可以转化为这样一个新问题:如何构造一对全等三角形?根据已知点M是直角三角形斜边的中点,产生联想:直角三角形斜边上的中点是斜边的一半,得:MDMBMA。连结M A后,可以证明MDEMAC。答:EMC是等腰直角三角形。证明:连接AM,由题意得,DEAC,ADAB,DAEBAC90。DAB90。DAB为等腰直角三角形。又MDMB,MAMDMB,AMDB,MADM AB45。MDEMAC105,DMA90。MDEMAC。DMEAMC,MEMC。又DMEEMA90,AMCEMA90。MCEM。EMC是等腰直角三角形。说明:构造全等三角形是
17、解决这个问题的关键,那么构造全等又如何进行的呢?对条件的充分认识和对知识点的联想可以找到添加辅助线的途径。构造过程中要不断地转化问题或转化思维的角度。会转化,善于转化,更能体现思维的灵活性。在问题中创设以三角板为情境也是考题的一个热点。例11.如图,等腰直角三角形ABC中,ACB90,AD为腰CB上的中线,CEAD交AB于E求证CDAEDB提示:作CFAB于F,则ACF45,在ABC中,ACB90,CEAD,于是,由ACGB45,ABAC ,且易证12,由此得AGCCEB(ASA)再由CDDB,CGBE,GCDB,又可得CGDBED(SAS),则可证CDAEDB例12.如图,ABC中,12,3
18、4,56A60求ECF、FEC的度数ABCDFGE123456略解:因为 A60,所以 23(18060)60;又因为 B、C、D是直线,所以 4590;于是 FEC2360,FCE4590,FEC60ABCDEFGH例13. 在RtABC中,A90,CE是角平分线,和高AD相交于F,作FGBC交AB于G,求证:AEBG略解:作EHBC于H,由于E是角平分线上的点,可证 AEEH ;且又由 AECBECBCADECAAFE可证 AEAF,于是由 AFEH,AFGEHB90,BAGF可得 AFGEHB;所以 AGEB,即 AEEGBGGE,所以 AEBG反馈练习1.如图,AD是ABC的中线,如果ABC的面积是18cm2,则ADC的面积是 cm22.如图,ABC中,ABC=BAC=45,点P在AB上,ADCP,BECP,垂足分别为D,E,已知DC=2,则BE= 3(2009宜宾)已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程合作经营合同:共铸辉煌
- 2024年发布:新能源汽车充电设施建设与运营合作协议(标的:充电站所有权及运营权)
- 2024包工包料加层施工工程合同
- 2024档口出租合同范本
- 2024年工程勘察设计安全环保合同
- 2024年教育领域在线教学平台建设与运营合同
- 2024简单雇佣合同格式参考
- 2024标准技术开发合同
- 2024标准医疗器械销售合同范本
- 2024年城市轨道交通保洁分包合同
- 大国工匠徐立平
- 《工程建设标准强制性条文电力工程部分2023版》
- 下丘脑疾病课件
- 力的合成说课课件省公开课金奖全国赛课一等奖微课获奖课件
- 慢阻肺患者随访记录表(参考样表)
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 2024年招录考试-大学毕业生士兵提干笔试参考题库含答案
- 实习生顶岗实习安全教育
- (正式版)QBT 5976-2024 制浆造纸行业绿色工厂评价要求
- 超声医学科-提高超声医学科危急值上报率PDCA
- 数字贸易学 课件 第12章 消费者行为与权益
评论
0/150
提交评论