下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.2平面向量的基本定理及其坐标表示典例精析题型一平面向量基本定理的应用【例1】如图ABCD中,M,N分别是DC,BC中点.已知=a,=b,试用a,b表示,与【解析】易知,即所以(2ba), (2ab).所以(ab).【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知D为ABC的边BC上的中点,ABC所在平面内有一点P,满足0,则等于()A.B.C.1D.2【解析】由于D为BC边上的中点,因此由向量加法的平行四边形法则,易知2,因此结合0即得2,因此易得P,A,D三点共线且D是PA的中点,所以1,即选C.题型二向量的坐标
2、运算【例2】 已知a(1,1),b(x,1),ua2b,v2ab.(1)若u3v,求x;(2)若uv,求x.【解析】因为a(1,1),b(x,1),所以u(1,1)2(x,1)(1,1)(2x,2)(2x1,3),v2(1,1)(x,1)(2x,1).(1)u3v(2x1,3)3(2x,1)(2x1,3)(63x,3),所以2x163x,解得x1.(2)uv (2x1,3)(2x,1) (2x1)3(2x)0x1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.【变式训练2】已知向量an(cos,sin)(nN*),|b|1.则函数y|a1b|2|a2b|
3、2|a3b|2|a141b|2的最大值为.【解析】设b(cos ,sin ),所以y|a1b|2|a2b|2|a3b|2|a141b|2(a1)2b22(cos,sin)(cos ,sin )(a141)2b22(cos,sin)(cos ,sin )2822cos(),所以y的最大值为284.题型三平行(共线)向量的坐标运算【例3】已知ABC的角A,B,C所对的边分别是a,b,c,设向量m(a,b),n(sin B,sin A),p(b2,a2).(1)若mn,求证:ABC为等腰三角形;(2)若mp,边长c2,角C,求ABC的面积.【解析】(1)证明:因为mn,所以asin Absin B.
4、由正弦定理,得a2b2,即ab.所以ABC为等腰三角形.(2)因为mp,所以mp0,即a(b2)b(a2)0,所以abab.由余弦定理,得4a2b2ab(ab)23ab,所以(ab)23ab40.所以ab4或ab1(舍去).所以SABCabsin C4.【点拨】设m(x1,y1),n(x2,y2),则mnx1y2x2y1;mnx1x2y1y20.【变式训练3】已知a,b,c分别为ABC的三个内角A,B,C的对边,向量m(2cosC1,2),n(cos C,cos C1).若mn,且ab10,则ABC周长的最小值为()A.105B.105C.102D.102【解析】由mn得2cos2C3cos C20,解得cos C或cos C2(舍去),所以c2a2b22abcos Ca2b2ab(ab)2ab100ab,由10ab2ab25,所以c275,即c5,所以abc105,当且仅当ab5时,等号成立.故选B.总结提高1.向量的坐标表示,实际是向量的代数表示,在引入向量的坐标表示后,即可使向量运算完全代数化,将数与形紧密地结合起来.向量方法是几何方法与代数方法的结合体,很多几何问题可转化为熟知的向量运算.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆电讯职业学院《班主任著作研读》2023-2024学年第一学期期末试卷
- 浙江中医药大学《数字摄影测量》2023-2024学年第一学期期末试卷
- 浙江建设职业技术学院《TIA技术及应用》2023-2024学年第一学期期末试卷
- 郑州工业应用技术学院《钢结构设计概述》2023-2024学年第一学期期末试卷
- 小学通风和消毒制度
- 情境剧本创作技巧及其作用
- DB2201T 66.3-2024 肉牛牛舍建设规范 第3部分:种母牛
- 生物学基础与方法模板
- 人资行政战略展望模板
- 七夕传媒策略研讨
- 2024年日语培训机构市场供需现状及投资战略研究报告
- 2024年公安机关理论考试题库附参考答案(基础题)
- 历史-广东省大湾区2025届高三第一次模拟试卷和答案
- 2024年安全生产法律、法规、标准及其他要求清单
- 2023年高考文言文阅读设题特点及备考策略
- 抗心律失常药物临床应用中国专家共识
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- DB32T 1590-2010 钢管塑料大棚(单体)通 用技术要求
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
评论
0/150
提交评论