版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 基础知识 一、七种空间中的距离 1两点间的距离连结两点的 的长度 2点到直线的距离从直线外一点向直线引垂线, 的长度 3点到平面的距离从点向平面引垂线, 的长度 4平行直线间的距离从两条平行线中一条上任意 取一点向另一条直线引垂线,的长度 点到垂足之间线段 点到垂 足间线段 这点到垂
2、足间线段 线段 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 5异面直线间的距离两条异面直线的公垂线夹在 这两条异面直线间的 的长度 6直线与平面间的距离如果一条直线和一个平面 平行,从直线上任意一点向平面引垂线, 的长度 7两平行平面间的距离夹在两个平面之间的 的长度 线段 这点到垂足 间线段 公 垂线段 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 二、求距离的方法 从
3、空间中各种距离的定义看,它们基本上都是转化为 两点间的距离来计算因此,会求空间中两点的距离是基 础,求点到直线和点到平面的距离是重点,求异面直线的 距离是难点求解距离问题要注意运用化归与转化思路: 面面距离线面距离点面距离点点距离 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 三、求距离的一般步骤 1找出或作出有关距离的图形 2证明它们就是所求的距离 3利用平面几何和解三角形的知识在平面内计算求 解 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理
4、规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 易错知识 一、公式应用失误 1异面直线a、b所成的角60,其公垂线为AB,且 Aa,Bb,又Ma,Nb,且AM5,BN4,AB 3,则MN_. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 二、分析问题不全面致误 2不共面的四个定点到平面的距离相等,这样的平 面共有() A3个B4个C6个D7个 解题思路:如图设E、F、G分别为棱AB,AC,AD 的中点,则过E、F、G三点的平面P就是高AH的垂直平分 面,所以
5、它与A、B、C、D四点等距四面体有四条高, 因此,这样的平面共有四个可作,因此,与A、B、C、D 四点等距的平面有四个 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 如图,设k,L分别为BD、BC的中点,则过K、L、 F、G四点的平面就是异面直线AB、CD的公垂线段MN的 垂直平分面,它与A、B、C、D四点距离相等四面体有 三对异面的棱,这样的平面共有3个,因此,这道题的正 确答案是7个故选D. 答案:D 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知
6、识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 回归教材 1下列命题中: PA矩形ABCD所在的平面,则P、B两点间的距离 等于点P到BC的距离; 若ab,a ,b,则a与b的距离等于a与的距 离; 直线a、b是异面直线,a,b,则a、b之间的 距离等于b与的距离; 直线a、b是异面直线,a,b,且,则 a、b之间的距离等于与之间的距离 其中正确命题的个数有() A1个B2个C3个D4个 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解析:正确,如图1
7、,点线距离可转化为点与点之 间的距离;不正确,如图2; 、正确,如图3、图4,异面直线的距离常常可转 化为线面或面面之间的距离故选C. 答案:C 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 2已知平面外不共线的三点A,B,C到的距离都 相等,则正确的结论是() A平面ABC必不垂直于 B平面ABC必平行于 C平面ABC与相交 D存在ABC的一条中位线平行于或在内 解析:平面ABC可以与平行、相交(包括垂直),故排 除A、B、C,选择D. 答案:D 走向高考走向高考 高考总复习高考总
8、复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 3点P是 ABCD所在平面外一点,若P到四边的距 离都相等,则ABCD() A是正方形 B是长方形 C有一个内切圆 D有一个外接圆 解析:根据射影长定理,知P的射影O到四边距离相 等,所以选C. 答案:C 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 4(教材改编题)如图,正方体ABCDA1B1C1D1中, 棱长为1.则C1D1的中点E到直线AB的距离为() 解
9、析:易知其距离为线段BC1的长,BC1的长为. 答案:B 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 5已知直角三角形EFG的直角顶点E在平面内,斜 边FG,且FG6cm,EF、EG和分别成30和45 角,则FG到的距离为() 答案:B 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 【例1】(2008启东中学模拟)P为四面体SABC的侧 面SBC内的一点,若动点P到底面A
10、BC的距离与到点S的距 离相等,则动点P的轨迹是侧面SBC内的() A线段或圆的一部分 B椭圆或双曲线的一部分 C双曲线或抛物线的一部分 D抛物线或椭圆的一部分 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解析本题考查学生对圆锥曲线定义的掌握程度; 培养学生的探究能力、迁移能力、将空间图形与平面图形 的转化能力如图,过点P作PH面ABC于点H,再过点P 作POBC于点O,则POH等于二面角SBCA的平面 角,从而由条件知PHPS,所以sin, 当 时,动点P的轨迹是抛物线的一部分;
11、当 时,动点P的轨迹是椭圆的一部分,故选D. 答案D 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 (2007西安八校联考)如图,正方体ABCD A1B1C1D1的侧面ABB1A1内有一动点P到直线AA1和BC的距 离相等,则动点P的轨迹是() A线段 B椭圆的一部分 C双曲线的一部分 D抛物线的一部分 答案:D 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解析:P到直线
12、BC的距离即为P到点B的距离,于是 由抛物线的定义知,P点的轨迹为(以AA1为准线,B为焦点 的)抛物线的一部分,故选D. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 【例2】(2009重庆,19)如图,在ABC中,B 90,AC,D、E两点分别在AB、AC上,使2, DE3.现将ABC沿DE折成直二面角,求: 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 (1)异面直线
13、AD与BC的距离; (2)二面角AECB的大小(用反三角函数表示) 命题意图本题主要考查异面直线之间的距离以及 二面角的作法和求法,以及空间向量的运用,关键是注意 折叠问题中折前与折后的不变量 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解析(1)在图(1)中,因故DEBC. 又因为B90,从而ADDE. 在图(2)中,因ADEB是直二面角,ADDE,故 AD底面DBCE,从而ADDB.而DBBC,故DB为异面 直线AD与BC的公垂线 下面求DB的长,在图(1)中, 又已知DE3,
14、从而 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 (2)在图(2)中,过D作DFCE,交CE的延长线于点 F,连接AF,由(1)知,AD底面DBCE.由三垂线定理知 AFFC,故AFD为二面角AECB的平面角 在底面DBCF中,DEFBCE, 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理
15、规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 从而在RtDFE中,DE3, DFDEsinDEFDEsinBCE 在RtAFD中,AD4,tanAFD 因此所求二面角AECB的大小为 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 如下图,在棱长为a的正方体ABCDA1B1C1D1中, P是BC的中点,DP交AC于M,B1P交BC1于N, (1)求证:MN是异面直线AC与BC1的公垂线; (2)求异面直线AC与BC1间的距离 走向高考走向高考 高考总复习高考
16、总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解析:(1)欲证MNAC且MNBC1,只要证明 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 总结评述:异面直线间的距离要控制难度,只要会求 给出的公垂线段的情况此题若不提示点P的位置而要你 直接求AC与BC1间的距离,则难度大得多作为开阔思 路,想一想,还有哪些方法可求之. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理
17、规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 【例3】如图,在直三棱柱ABCA1B1C1中,ACB 90,ACBCa,D、E分别为棱AB、BC的中点,M 为棱AA1上的点,二面角MDEA为30. (1)证明:A1B1C1D; (2)求MA的长,并求点C到平面MDE的距离 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 命题意图本小题主要考查空间中的线面关系,解 三角形等基础知识,考查空间想象力与思维能力 解析(1)证明:如图连结CD. 三棱柱ABCA1B1C
18、1是直三棱柱, CC1平面ABC, CD为C1D在平面ABC内的射影 ABC中,ACBC,D为AB中点 ABCD,ABC1D. A1B1AB,A1B1C1D. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 (2)解法一:过点A作CE的平行线,交ED的延长线于 F,连结MF. D、E分别为AB、BC的中点, DEAC, 又AFCE,CEAC, AFDE. MA平面ABC, AF为MF在平面ABC内的射影, MFDE, MFA为二面角MDEA的平面角,MFA30. 走向高考走向高考 高考
19、总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 在RtMAF中, MFA30, 作AGMF,垂足为G. MFDE,AFDE, DE平面AMF, 平面MDE平面AMF, AG平面MDE. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 在RtGAF中,GFA30,AF, AG,即A到平面MDE的距离为. CADE,CA平面MDE, C到平面MDE的距离与A到平面MDE的距离相等, 为. 走向高考走向高
20、考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解法二:过点A作CE的平行线,交DE的延长线于F, 连结MF. D、E分别为AB、CB的中点, DEAC, 又AFCE,CEAC, AFDE. MA平面ABC, AF为MF在平面ABC内的射影, MFDE, MFA为二面角MDEA的平面角,MFA30. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 在RtMAF中,MFA30, 设C到平面MD
21、E的距离为h. VMCDEVCMDE, 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 (2009重庆,19)如图所示,在四棱锥SABCD中, ADBC且ADCD,平面CSD平面ABCD,CSDS, CS2AD2,E为BS的中点,CE , AS . 求: (1)点A到平面BCS的距离; (2)二面角ECDA的大小 走向高考走向高考
22、 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解析:(1)因为ADBC,且BC平面BCS,所以 AD平面BCS,从而A点到平面BCS的距离等于D点到平 面BCS的距离 因为平面CSD平面ABCD,ADCD,故AD平面 CSD,从而ADDS.由ADBC,得BCDS.又由CSDS 知DS平面BCS,从而DS为点A到平面BCS的距离 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 (2)如图,过E
23、点作EGCD,交CD于点G,又过G点 作GHCD,交AB于H,故EGH为二面角ECDA的 平面角,记为.过E点作EFBC,交CS于点F,连结GF. 因平面ABCD平面CSD,GHCD,易知GHGF,故 EGF. 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识
24、梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 【例4】在长方体ABCDA1B1C1D1中,AB4,BC 3,CC12(如图) (1)求证:平面A1BC1平面ACD1; (2)求(1)中两个平行平面间的距离 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 分析证面面平行,只需证其中一个平面内的某两 条相交直线平行于另一个平面,而计算面面距离,除找公 垂线段外,还可求其中一个平面内任一点到另一平面的距 离,也可用“等体积法”计算 走向高考走向高考 高考总复习高考总复习 数学数学 首页上页下页末页 知识梳理知识梳理规律方法提炼规律方法提炼课后强化作业课后强化作业课堂题型设计课堂题型设计 解(1)由于BC1AD1,则BC1平面ACD1. 同理,A1B平面ACD1,则平面A1BC1平面ACD1; (2)设两平行平面A1BC1与ACD1间的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化创意产品定制采购合同样板
- 养老院管理规定与合同
- 2024年离婚流程简化协议
- 城市电力管沟施工安全管理方案
- 2024年标准长期股权投资合作模板合同版
- 2024年项目保密协议范例3篇
- 2024年养殖场承包合同范本:养殖场多业态经营与产业链整合3篇
- 2024年版工业租赁合同标准格式样本版B版
- 医疗设施施工班组合同指南
- 2024年金融机构外汇借款还款风险评估合同3篇
- 部编六年级语文上册 读音易错字
- 2023高中学业水平合格性考试历史重点知识点归纳总结(复习必背)
- 低压用电客户电能计量装置典型设计
- 桑树栽培技术课件
- 精编-人教版八年级上册物理-第四章光现象全单元课件设计(5课时)
- 管道和设备保温工程检验批质量验收记录
- 电缆槽桥架安装检查记录
- 中班美术教案:美丽的社区教案及教学反思
- 2022年江苏小高考生物试题(含答案)
- 游戏王统一规则
- 五年级上册数学课件-9.3 多边形的面积(复习)丨苏教版 (共15张PPT)
评论
0/150
提交评论