


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、我会制作,所以我已学会“圆锥的侧面积”实验教学案例分析 背景分析:素质教育的核心是培养学生的创新意识和实践能力,而主渠道是课堂教学。数学教育兴起了以建构主义理论为指导的“建构性学习与教学模式”的课堂教学改革与探索活动,建构性学习与教学过程真正建立在学生自主活动、主动探索、合作交流、亲身体验的基础上来建构新知识,教师不是把新知识传授给学生,而是让学生去主动建构,真正体现了“以学生的发展为本”的宗旨。“圆锥的侧面积”这节课在对课堂教学中怎样促进他们的主体精神、创新意识和实践能力做了努力探索。下面是“圆锥的侧面积”这节课的教学片段和反思。片段1 :上课了,教师头戴圣诞老人的帽子,表情夸张的进入教室。
2、“这是圣诞老人的帽子,漂亮吗?叫什么几何体?”学生很兴奋,课堂气氛一下活跃起来,“漂亮,是圆锥”。同学们想知道如何做吗?你能用手上的长方形白纸折叠出圆锥形帽子吗?试一试!教师的鼓励让学生跃跃欲试,但是结果学生却发现用长方形的纸片制作不出圆锥的帽子。点评:初步尝试、体验,产生悬念,造成认知冲突,激发学生的求知欲,让学生急于向知道如何正确制作, 创设情境、提出问题,有利于增强学生“数学即生活、生活离不开数学”的认识,有利于培养学生“用数学的眼光去认识所生活的环境与社会”并学会“数学的提出、分析和解决问题的意识和能力。片段2:教师提问:让我们先看看它的展开图的形状。哪同学上来帮忙一下?学生上来把老师
3、手上的圣诞老人帽子剪开,然而粘贴在黑板上,发现圆锥侧面展开图是扇形。引导学生观察、分析、比较出展开扇形与圆锥的关系。作几次演示,让学生有意识地观察。怎样才能制作这种圆锥形的帽子?思考一下。学生尝试后发现任意的扇形可以制作出扇形,但是做出的跟已给的圆锥只是形状的相似,很跟要制作这种圆锥形帽子需要知道扇形的半径和扇形的圆心角,关键是需要知道扇形的圆心角。但是扇形的半径和扇形的圆心角跟已给的圆锥中的那些数据有关?学生猜测可能跟圆锥的母线、半径或者高有关。点评:通过剪开合拢,让学生知道:需要怎样的材料,先看它展开是什么,体现了数学的化归的思想。自主学习、协作学习通过比较、讨论,发现内在联系,即展开扇形
4、的半径就是圆锥的母线,弧长就是圆锥底面的周长,为求圆心角的公式得出作辅垫,从新知识的生长点上设疑,采用从特殊到一般的探究方法,促成学生的“最近发展区”向现实发展水平转化。片段3:自然学生急于想知道如何求这个扇形的圆心角。教师引导提示扇形的弧长就是圆锥的底面圆的周长。 因为 所以 。圆锥形帽子那些数据可以直接量出?现在能否做出?学生恍然大悟能了,以圆锥的母线为扇形的半径,以计算出的度数为扇形的圆心角。学生再次尝试,教师拿着已制作好的圆锥形帽子巡视,并作适当的引导和鼓励,让一个个学生把制作好的帽子套在教师的帽子上进行验证,点评学生的劳动果实。追问:要制作圆锥形帽子需要多少材料?计算圆锥的侧面积它有
5、什么规律?学生展开讨论得出圆锥的侧面展开图是扇形,其中扇形的面积是弧长()乘以半径(l)的一半。水到渠成,得出结论。继续设问:s圆锥侧=rl,它跟圆柱的侧面积公式有何区别?圆柱侧rl,两者系数上不一样。如果要制作有底的圆锥形母线长80cm,底面直径为40cm。求出这个圆锥的表面积(不计接缝用料,取3.14,结果保留两个有效数字。) s表=s侧+s底,引导学生分析讨论。同时强调在解决实际问题过程中,不能采用四舍五入法保留有效数字,而要采用进一法保留,为什么?点评:实际问题的引入,让学生认识到数学来源于生活,数学又是服务于生活,学不是纸上谈兵。建构新知、解决问题,引导学生主动探究,通过学生的猜想、
6、论证,激发思维活动,培养学生的探索能力和合作学习习惯。通过学生的动手操作、亲身体验,在获得新知和培养实践能力的同时有一种成功的喜悦。片段4:1.如果圆柱底面半径为4cm,它的侧面积为 ,那么圆柱的母线长为_.2、圆锥的底面半径为2 cm,高为cm,则这个圆锥表面积_3、一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_4.圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是_5、已知圆锥的母线ab=12,底面半径为2。从b点绕其侧面一周回到b点的最短距离是多少?点评:练习巩固,应用新知,给出一组练习,让学生练习,让部分学生上台板演,练习的设
7、计具有一定的梯度,可以面向全体的学生,让各层次的学生都有所得,有所为。允许学生展开讨论,特别是当出现典型的错误时,更让学生能讨论争辩。最后一题化曲为直,让学生领会了思维转化的魅力。片段5:师:通过本节课的学习,你学会了什么?有什么的收获?生:知道了圆锥的侧面展开图是扇形;会画圆锥的侧面展开图生:学会了推导圆心角公式和圆锥侧面积公式的方法;会根据已知条件求圆锥的侧面积和表面积;生:学会了制作圆锥形帽子的方法生:类比的数学方法,化归的数学思想。 学生畅所欲言,发表自己的见解,其他学生接着讨论补充。教师在倾听评价,肯定对的,补充不足的,最后总结。点评:小结设计以开放的形式呈现,给学生提供一个交流和倾
8、听的机会,让学生自由发言,学生相互补充发言,通过自我小结,明确了本节课的目标,又实现了自我反馈,从而建构起自己的知识经验,形成自己的见解,自己的才是最好的。教学反思在以往的教学中,一般在教学之初先复习回顾有关旧知识,讲解新课内容所要学习的概念和原理,教师板演几道典型的例题,而后再让学生去做一定的练习,尝试去解答有关的习题,其潜在的假设是:学和做是两个过程,必须先学会了,必须先知道懂得了,才能去做练习,去解决有关的问题。而“圆锥的侧面积”这堂主体建构模式实验教学研究课是采用相反的思路来设计教学:在解决问题中学,在动手实践中学,学生会制作就是表明学生已经学会了。这堂课思路就是使学生在“做中学”,真正体现了“以学生的发展为本”的宗旨。教师不是把新知识传授给学生,而是让学生去主动建构,但教师的引导和帮助对于学生的思考和知识的建构来说也是极为重要的。教师不是如何去控制学生的学习活动,而是如何创设良好的学习环境去促进学生的学习,始终引导学生通过持续的观察、分折、猜想、估算、概括、推证和验证等思维活动和学生的动手操作、交流讨论等活动,来建构起与此相关的知识经验。学生在活动中自主探索,合作学习,使学生快乐、轻松的成为学习的主人,体会到成功的喜悦,并通过合作学习,让学生体会到任何一个成功
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年固定总价合同的结算方式解析
- 2025年上海长宁区初三二模语文试题及答案
- 广西桂金珠宝有限公司招聘10人笔试参考题库附带答案详解
- 2025黑龙江省旅游投资集团面向社会招聘15人笔试参考题库附带答案详解
- 脊髓出血性疾病的临床护理
- 2025年小学学生食堂工人聘用合同
- 生地会考试卷及答案百度
- 上海二年级下试卷及答案
- 山东聊城中考数学试卷及答案
- 2025物流转让合同协议
- 国家开放大学《传感器与测试技术》实验参考答案
- 危害分析与关键控制点HACCP课件
- 防灾减灾科普知识答题及答案
- 2020年老年科护士分层次培训计划
- Q∕SY 1419-2011 油气管道应变监测规范
- 消费者心理与行为教学ppt课件(完整版)
- 颈椎功能障碍指数,Neck Disabilitv Index,NDI
- 天地万物一体 的整体观念
- 大班音乐游戏《邮递马车》课后反思
- 2022新高考卷小说《江上》 答案+评点
- 潜水式排污泵检验报告(共8页)
评论
0/150
提交评论