版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2016年全国各地中考数学试题分类解析汇编(第一辑)第22章 二次函数一选择题(共20小题)1(2016鄂州)如图,二次函数y=ax2+bx+c(a0)的图象与x轴正半轴相交于a、b两点,与y轴相交于点c,对称轴为直线x=2,且oa=oc,则下列结论:abc0;9a+3b+c0;c1;关于x的方程ax2+bx+c(a0)有一个根为其中正确的结论个数有()a1个 b2个 c3个 d4个2(2016长沙)已知抛物线y=ax2+bx+c(ba0)与x轴最多有一个交点,现有以下四个结论:该抛物线的对称轴在y轴左侧;关于x的方程ax2+bx+c+2=0无实数根;ab+c0;的最小值为3其中,正确结论的个
2、数为()a1个 b2个 c3个 d4个3(2016资阳)已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过a(x1,m)、b(x1+n,m)两点,则m、n的关系为()am=n bm=n cm=n2dm=n24(2016南宁)二次函数y=ax2+bx+c(a0)和正比例函数y=x的图象如图所示,则方程ax2+(b)x+c=0(a0)的两根之和()a大于0 b等于0 c小于0 d不能确定5(2016滨州)抛物线y=2x22x+1与坐标轴的交点个数是()a0 b1 c2 d36(2016台湾)如图,坐标平面上,二次函数y=x2+4xk的图形与x轴交于a、b两点,与y轴交于c点,其顶点为d,且
3、k0若abc与abd的面积比为1:4,则k值为何?()a1 b c d7(2016台湾)坐标平面上,某二次函数图形的顶点为(2,1),此函数图形与x轴相交于p、q两点,且pq=6若此函数图形通过(1,a)、(3,b)、(1,c)、(3,d)四点,则a、b、c、d之值何者为正?()aa bb cc dd8(2016永州)抛物线y=x2+2x+m1与x轴有两个不同的交点,则m的取值范围是()am2 bm2 c0m2 dm29(2016兰州)二次函数y=x22x+4化为y=a(xh)2+k的形式,下列正确的是()ay=(x1)2+2 by=(x1)2+3 cy=(x2)2+2 dy=(x2)2+41
4、0(2016天津)已知二次函数y=(xh)2+1(h为常数),在自变量x的值满足1x3的情况下,与其对应的函数值y的最小值为5,则h的值为()a1或5 b1或5 c1或3 d1或311(2016舟山)二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为()a b2 c d12(2016兰州)点p1(1,y1),p2(3,y2),p3(5,y3)均在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()ay3y2y1by3y1=y2cy1y2y3dy1=y2y313(2016沈阳)在平面直角坐标系中,二次函数y=x2+2x3的图象如图所示
5、,点a(x1,y1),b(x2,y2)是该二次函数图象上的两点,其中3x1x20,则下列结论正确的是()ay1y2by1y2cy的最小值是3 dy的最小值是414(2016常德)二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:b0;c0;a+cb;b24ac0,其中正确的个数是()a1 b2 c3 d415(2016孝感)如图是抛物线y=ax2+bx+c(a0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间则下列结论:ab+c0;3a+b=0;b2=4a(cn);一元二次方程ax2+bx+c=n1有两个不相等的实数根其中正确结论的个数是()a
6、1 b2 c3 d416(2016巴中)如图是二次函数y=ax2+bx+c图象的一部分,图象过点a(3,0),对称轴为直线x=1,给出四个结论:c0;若点b(,y1)、c(,y2)为函数图象上的两点,则y1y2;2ab=0;0,其中,正确结论的个数是()a1 b2 c3 d417(2016广安)已知二次函数y=ax2+bx+c(a0)的图象如图所示,并且关于x的一元二次方程ax2+bx+cm=0有两个不相等的实数根,下列结论:b24ac0;abc0;ab+c0;m2,其中,正确的个数有()a1 b2 c3 d418(2016齐齐哈尔)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1
7、,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()a4个 b3个 c2个 d1个19(2016随州)二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c3b;(3)8a+7b+2c0;(4)若点a(3,y1)、点b(,y2)、点c(,y3)在该函数图象上,则y1y3y2;(5)若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,
8、则x115x2其中正确的结论有()a2个 b3个 c4个 d5个20(2016烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:4acb2;a+cb;2a+b0其中正确的有()a b c d2016年全国各地中考数学试题分类解析汇编(第一辑)第22章 二次函数参考答案与试题解析一选择题(共20小题)1(2016鄂州)如图,二次函数y=ax2+bx+c(a0)的图象与x轴正半轴相交于a、b两点,与y轴相交于点c,对称轴为直线x=2,且oa=oc,则下列结论:abc0;9a+3b+c0;c1;关于x的方程ax2+bx+c(a0)有一个根为其中正确的结论个数有()a1个 b2个 c3个 d
9、4个【分析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断;由图象可知当x=3时,y0,可判断;由oa=oc,且oa1,可判断;把代入方程整理可得ac2bc+c=0,结合可判断;从而可得出答案【解答】解:由图象开口向下,可知a0,与y轴的交点在x轴的下方,可知c0,又对称轴方程为x=2,所以0,所以b0,abc0,故正确;由图象可知当x=3时,y0,9a+3b+c,故错误;由图象可知oa1,oa=oc,oc1,即c1,c1,故正确;假设方程的一个根为x=,把x=代入方程可得+c=0,整理可得acb+1=0,两边同时乘c可得ac2bc+c=0,即方程有一个
10、根为x=c,由可知c=oa,而当x=oa是方程的根,x=c是方程的根,即假设成立,故正确;综上可知正确的结论有三个,故选c【点评】本题主要考查二次函数的图象和性质熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键特别是利用好题目中的oa=oc,是解题的关键2(2016长沙)已知抛物线y=ax2+bx+c(ba0)与x轴最多有一个交点,现有以下四个结论:该抛物线的对称轴在y轴左侧;关于x的方程ax2+bx+c+2=0无实数根;ab+c0;的最小值为3其中,正确结论的个数为()a1个 b2个 c3个 d4个【分析】从抛物线与x轴最多一个交点及ba0,可以推断抛物线最小值最小为0,
11、对称轴在y轴左侧,并得到b24ac0,从而得到为正确;由x=1及x=2时y都大于或等于零可以得到正确【解答】解:ba00,所以正确;抛物线与x轴最多有一个交点,b24ac0,关于x的方程ax2+bx+c+2=0中,=b24a(c+2)=b24ac8a0,所以正确;a0及抛物线与x轴最多有一个交点,x取任何值时,y0当x=1时,ab+c0;所以正确;当x=2时,4a2b+c0a+b+c3b3aa+b+c3(ba)3所以正确故选:d【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b24a
12、c的符号3(2016资阳)已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过a(x1,m)、b(x1+n,m)两点,则m、n的关系为()am=n bm=n cm=n2dm=n2【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=时,y=0且b24c=0,即b2=4c,其次,根据抛物线对称轴的定义知点a、b关于对称轴对称,故a(,m),b(+,m);最后,根据二次函数图象上点的坐标特征即可得出结论【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,当x=时,y=0且b24c=0,即b2=4c又点a(x1,m),b(x1+n,m),点a、b关于直线x=对称,a(,m),b(
13、+,m),将a点坐标代入抛物线解析式,得m=()2+()b+c,即m=+c,b2=4c,m=n2,故选d【点评】本题考查的是抛物线与x轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键4(2016南宁)二次函数y=ax2+bx+c(a0)和正比例函数y=x的图象如图所示,则方程ax2+(b)x+c=0(a0)的两根之和()a大于0 b等于0 c小于0 d不能确定【分析】设ax2+bx+c=0(a0)的两根为x1,x2,由二次函数的图象可知x1+x20,a0,设方程ax2+(b)x+c=0(a0)的两根为a,b再根据根与系数的关系即可得出结论【解答】解:设ax2+bx+c=0(a0)的
14、两根为x1,x2,由二次函数的图象可知x1+x20,a0,0设方程ax2+(b)x+c=0(a0)的两根为a,b,则a+b=+,a0,0,a+b0故选c【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键5(2016滨州)抛物线y=2x22x+1与坐标轴的交点个数是()a0 b1 c2 d3【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数【解答】解:抛物线y=2x22x+1,令x=0,得到y=1,即抛物线与y轴交点为(0,1);令y=0,得到2x22x+1=0,即(x1)2=0,解得:x1=x2
15、=,即抛物线与x轴交点为(,0),则抛物线与坐标轴的交点个数是2,故选c【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点6(2016台湾)如图,坐标平面上,二次函数y=x2+4xk的图形与x轴交于a、b两点,与y轴交于c点,其顶点为d,且k0若abc与abd的面积比为1:4,则k值为何?()a1 b c d【分析】求出顶点和c的坐标,由三角形的面积关系得出关于k的方程,解方程即可【解答】解:y=x2+4xk=(x2)2+4k,顶点d(2,4k),c(0,k),oc=k,abc的面积=aboc=abk,abd的面积=ab(4k
16、),abc与abd的面积比为1:4,k=(4k),解得:k=故选:d【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键7(2016台湾)坐标平面上,某二次函数图形的顶点为(2,1),此函数图形与x轴相交于p、q两点,且pq=6若此函数图形通过(1,a)、(3,b)、(1,c)、(3,d)四点,则a、b、c、d之值何者为正?()aa bb cc dd【分析】根据抛物线顶点及对称轴可得抛物线与x轴的交点,从而根据交点及顶点画出抛物线草图,根据图形易知a、b、c、d的大小【解答】解:二次函数图形的顶点为(2,1),对称轴为x=2,pq=6=3,图形与x
17、轴的交点为(23,0)=(1,0),和(2+3,0)=(5,0),已知图形通过(2,1)、(1,0)、(5,0)三点,如图,由图形可知:a=b0,c=0,d0故选:d【点评】本题主要考查抛物线与x轴的交点,根据抛物线的对称性由对称轴及交点距离得出两交点坐标是解题的关键8(2016永州)抛物线y=x2+2x+m1与x轴有两个不同的交点,则m的取值范围是()am2 bm2 c0m2 dm2【分析】由抛物线与x轴有两个交点,则=b24ac0,从而求出m的取值范围【解答】解:抛物线y=x2+2x+m1与x轴有两个交点,=b24ac0,即44m+40,解得m2,故选a【点评】本题考查了抛物线与x轴的交点
18、问题,注:抛物线与x轴有两个交点,则0;抛物线与x轴无交点,则0;抛物线与x轴有一个交点,则=09(2016兰州)二次函数y=x22x+4化为y=a(xh)2+k的形式,下列正确的是()ay=(x1)2+2 by=(x1)2+3 cy=(x2)2+2 dy=(x2)2+4【分析】根据配方法,可得顶点式函数解析式【解答】解:y=x22x+4配方,得y=(x1)2+3,故选:b【点评】本题考查了二次函数的形式你,配方法是解题关键10(2016天津)已知二次函数y=(xh)2+1(h为常数),在自变量x的值满足1x3的情况下,与其对应的函数值y的最小值为5,则h的值为()a1或5 b1或5 c1或3
19、 d1或3【分析】由解析式可知该函数在x=h时取得最小值1、xh时,y随x的增大而增大、当xh时,y随x的增大而减小,根据1x3时,函数的最小值为5可分如下两种情况:若1x3h,当x=3时,y取得最小值5;若1x3h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可【解答】解:当xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h1x3,x=1时,y取得最小值5,可得:(1h)2+1=5,解得:h=1或h=3(舍);若1x3h,当x=3时,y取得最小值5,可得:(3h)2+1=5,解得:h=5或h=1(舍)综上,h的值为1或5,故选:b【点评】本题主要考查二次函数的性质和最值
20、,根据二次函数的性质和最值分类讨论是解题的关键11(2016舟山)二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为()a b2 c d【分析】结合二次函数图象的开口方向、对称轴以及增减性进行解答即可【解答】解:二次函数y=(x1)2+5的大致图象如下:当m0xn1时,当x=m时y取最小值,即2m=(m1)2+5,解得:m=2当x=n时y取最大值,即2n=(n1)2+5,解得:n=2或n=2(均不合题意,舍去);当当m0x1n时,当x=m时y取最小值,即2m=(m1)2+5,解得:m=2当x=1时y取最大值,即2n=(11)2+5,解得:n=,所以m
21、+n=2+=故选:d【点评】本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴解析式是解题的关键12(2016兰州)点p1(1,y1),p2(3,y2),p3(5,y3)均在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()ay3y2y1by3y1=y2cy1y2y3dy1=y2y3【分析】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,p1(1,y1)与(3,y1)关于对称轴对称,可判断y1=y2y3【解答】解:y=x2+2x+c,对称轴为x=1,p2(3,y2),p3(5,y3)
22、在对称轴的右侧,y随x的增大而减小,35,y2y3,根据二次函数图象的对称性可知,p1(1,y1)与(3,y1)关于对称轴对称,故y1=y2y3,故选d【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性13(2016沈阳)在平面直角坐标系中,二次函数y=x2+2x3的图象如图所示,点a(x1,y1),b(x2,y2)是该二次函数图象上的两点,其中3x1x20,则下列结论正确的是()ay1y2by1y2cy的最小值是3 dy的最小值是4【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答【解答】解:y=x2+2x3=(x+3)(x1),
23、则该抛物线与x轴的两交点横坐标分别是3、1又y=x2+2x3=(x+1)24,该抛物线的顶点坐标是(1,4),对称轴为x=1a、无法确定点a、b离对称轴x=1的远近,故无法判断y1与y2的大小,故本选项错误;b、无法确定点a、b离对称轴x=1的远近,故无法判断y1与y2的大小,故本选项错误;c、y的最小值是4,故本选项错误;d、y的最小值是4,故本选项正确故选:d【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想14(2016常德)二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:b0;c0;a+cb;b24ac0,其中正确的个数是(
24、)a1 b2 c3 d4【分析】由二次函数的开口方向,对称轴0x1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可【解答】解:二次函数的开口向下,与y轴的交点在y轴的正半轴,a0,c0,故正确;01,b0,故错误;当x=1时,y=ab+c0,a+cb,故正确;二次函数与x轴有两个交点,=b24ac0,故正确正确的有3个,故选:c【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同
25、号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)15(2016孝感)如图是抛物线y=ax2+bx+c(a0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间则下列结论:ab+c0;3a+b=0;b2=4a(cn);一元二次方程ax2+bx+c=n1有两个不相等的实数根其中正确结论的个数是()a1 b2 c3 d4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(2,0)和(1,0)之间,则当x=1时,y0,于是可对进行判断;利用抛物线的对称轴为直
26、线x=1,即b=2a,则可对进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n1有2个公共点,于是可对进行判断【解答】解:抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点在点(2,0)和(1,0)之间当x=1时,y0,即ab+c0,所以正确;抛物线的对称轴为直线x=1,即b=2a,3a+b=3a2a=a,所以错误;抛物线的顶点坐标为(1,n),=n,b2=4ac4an=4a(cn),所以正确;抛物线与直线y=n有一个公共点,抛物线与直线y=n1有2个公共点,一元二次
27、方程ax2+bx+c=n1有两个不相等的实数根,所以正确故选c【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点16(2
28、016巴中)如图是二次函数y=ax2+bx+c图象的一部分,图象过点a(3,0),对称轴为直线x=1,给出四个结论:c0;若点b(,y1)、c(,y2)为函数图象上的两点,则y1y2;2ab=0;0,其中,正确结论的个数是()a1 b2 c3 d4【分析】根据抛物线y轴交点情况可判断;根据点离对称轴的远近可判断;根根据抛物线对称轴可判断;根据抛物线与x轴交点个数以及不等式的性质可判断【解答】解:由抛物线交y轴的正半轴,c0,故正确;对称轴为直线x=1,点b(,y1)距离对称轴较近,抛物线开口向下,y1y2,故错误;对称轴为直线x=1,=1,即2ab=0,故正确;由函数图象可知抛物线与x轴有2个
29、交点,b24ac0即4acb20,a0,0,故错误;综上,正确的结论是:,故选:b【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b24ac的符号17(2016广安)已知二次函数y=ax2+bx+c(a0)的图象如图所示,并且关于x的一元二次方程ax2+bx+cm=0有两个不相等的实数根,下列结论:b24ac0;abc0;ab+c0;m2,其中,正确的个数有()a1 b2 c3 d4【分析】直接利用抛物线与x轴交点个数以及抛物
30、线与方程之间的关系、函数图象与各系数之间关系分析得出答案【解答】解:如图所示:图象与x轴有两个交点,则b24ac0,故错误;图象开口向上,a0,对称轴在y轴右侧,a,b异号,b0,图象与y轴交于x轴下方,c0,abc0,故正确;当x=1时,ab+c0,故此选项错误;二次函数y=ax2+bx+c的顶点坐标纵坐标为:2,关于x的一元二次方程ax2+bx+cm=0有两个不相等的实数根,则m2,故正确故选:b【点评】此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键18(2016齐齐哈尔)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标
31、为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()a4个 b3个 c2个 d1个【分析】利用抛物线与x轴的交点个数可对进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对进行判断;由对称轴方程得到b=2a,然后根据x=1时函数值为负数可得到3a+c0,则可对进行判断;根据抛物线在x轴上方所对应的自变量的范围可对进行判断;根据二次函数的性质对进行判断【解答】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴
32、为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为(3,0),方程ax2+bx+c=0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,y0,即ab+c0,a+2a+c0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选b【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大全【职工管理】
- 《会展项目管理复习》课件
- 《市场营销环境》课件
- 银行工作总结服务至上效率为王
- 家政服务行业销售工作总结
- 保育实习工作总结15篇
- 2023年项目部安全培训考试题加答案解析
- 2023年员工三级安全培训考试题及答案(考点梳理)
- 中考誓师口号(15篇)
- 2023年-2024年项目部治理人员安全培训考试题加答案解析
- 做账实操-科学研究和技术服务业的账务处理示例
- 2025年人教版历史八上期末复习-全册重难点知识
- 山东省滨州市2023-2024学年高一上学期1月期末考试 政治 含答案
- 仪控技术手册-自控专业工程设计用典型条件表
- 《庆澳门回归盼祖国统一》主题班会教案
- 洗衣房工作人员岗位职责培训
- 广东省深圳市光明区2022-2023学年五年级上学期数学期末试卷(含答案)
- XX小区春节灯光布置方案
- 《华为销售人员培训》课件
- 《广西壮族自治区房屋建筑和市政工程施工招标文件范本(2023年版)》
- 2024年化学螺栓锚固剂项目可行性研究报告
评论
0/150
提交评论