第三章 相似理论_第1页
第三章 相似理论_第2页
第三章 相似理论_第3页
第三章 相似理论_第4页
第三章 相似理论_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、相似理论在泵与风机中的应用相似理论在泵与风机中的应用 高明 山东大学 在实际情况中,往往出现以下情况: n由于某些原因,不允许对某一产品直接进行试验,如三峡工程、 葛洲坝等; n虽然有的可直接进行试验,但成本太高,一旦失败,经济损失 较大,如大型电厂的55000千瓦的风机等; n如有一小风机,实际运行情况很好,参数合适,效率较高,噪 声很小,感到很满意,如果能将其放大,则可用于较重要的地 方,且希望保持其高效、低噪的特点。 工业化生产中遇到的情况 需要相似理论来解决问题需要相似理论来解决问题 相似理论在泵与风机中的应用相似理论在泵与风机中的应用 p产品设计:是指根据试验研究出来的性能良好、运行

2、可靠的是指根据试验研究出来的性能良好、运行可靠的 模型泵与风机模型泵与风机( (简称模型简称模型) )来设计与其相似的新的泵与风机来设计与其相似的新的泵与风机( (实实 型型) ),包括放大和缩小;,包括放大和缩小;(相似设计、模化设计) p变参数运行时性能参数计算:在发电企业中应用广泛。 p设计转速是设计转速是2900rpm,对应有一条性能曲线;转速改变之,对应有一条性能曲线;转速改变之 后,性能曲线不能在同一坐标上绘出,后,性能曲线不能在同一坐标上绘出,怎么办?怎么办? p再如,引风机的设计温度是再如,引风机的设计温度是200,但在试验时不能用,但在试验时不能用 200的烟气进行,的烟气进

3、行,怎么办?怎么办? n进行相似换算,把测的性能换算成进行相似换算,把测的性能换算成2900rpm时的数据,时的数据, 就可绘图了。就可绘图了。 n用空气试验,把试验的结果用相似换算的方法换算成用空气试验,把试验的结果用相似换算的方法换算成 200时的数据即可。时的数据即可。 变参数计算变参数计算 离不开相似理论 离不开相似条件 n相似是指两个叶轮与能量传递过程相似、流体在叶轮中的流动 过程相似。即它们在任一对应点上的同名物理量之比保持常数。 即满足相似条件。 n几何相似:模型与原型各对应点几何尺寸成比例,比值相等, 对应角相等,叶片数相同。 常数 p m p m p m p m p m D

4、D D D D D b b b b 2 2 1 1 2 2 1 1 mpamapamap ZZ; 1122 模型与原型各对应点速度方向相同,大小成比例, 比值相等,对应角相等,即流体在各对应点的速度三角形相 似 。 12122 12122 mmmmmmm ppppppp vvwwuD n vvwwuD n =常数 mpmp1122 ; 模型与原型各对应点各种力的方向相同,大小成比例,比值相等。 惯性力、粘性力惯性力、粘性力是泵与风机起主导作用的两种力。是泵与风机起主导作用的两种力。惯性力、粘性力惯性力、粘性力的相似的相似 准则是雷诺数准则是雷诺数Re,Re相等既满足动力相似条件。相等既满足动力

5、相似条件。 泵与风机流动时主要受四种力的作用泵与风机流动时主要受四种力的作用 1、惯性力、惯性力 2、粘性力、粘性力 3、重、重 力力 4、压、压 力力 该四个力同时满足相似条件,十分困难。该四个力同时满足相似条件,十分困难。 n事实上,Re很难做到相等,主要涉及到难以找到粘度差别很 大的流体。 n当Re105时,流体进入自模化区,粘性力不起作用,即使Re 不相等,也认为满足动力相似条件。 60 2 222 nDuD Re 泵与风机流体的流动已在泵与风机流体的流动已在Re105的阻力平方区的阻力平方区 即处于自动模化区即处于自动模化区 该区域粘性力不起作用,阻力系数不再改变。该区域粘性力不起作

6、用,阻力系数不再改变。 实践证明实践证明 n流量相似定律 n扬程(全压)相似定律 n功率相似定律 1 1、流量相似定律、流量相似定律 vmvmv vbDvAq 222222 vmmmmmm vpmpppp vm vp vbD vbD q q 2222 2222 222 222 mpppp mmmmm vuD n vuD n vm vp m p m p vm vp n n D D q q 3 2 2 : 2p=2m 22 22 pp mm bD bD D z D zD 1 2 2、扬程(全压)相似定律、扬程(全压)相似定律 221 122uuu Thhh u vu vu v HH gg 22 2

7、2 ppuphp mmumhm Hu v Huv 2 222 222 puppp mummm u vD n u vD n hm hp m p m p m p n n D D H H 22 2 2 hm hp m p m p m p m p n n D D p p 22 2 2 运动相似:运动相似: 全压相似定律:全压相似定律: 扬程相似定律:扬程相似定律: 其扬程之比其扬程之比: : 与几何尺寸之比的平方成正比与几何尺寸之比的平方成正比 与转速之比的平方成正比与转速之比的平方成正比 与流动效率之比的一次方成正比与流动效率之比的一次方成正比 3 3、功率相似定律、功率相似定律 hvm vv Hg

8、qHgq P 10001000 mp mm m p m p m p m p n n D D P P 35 2 2 轴功率定义:轴功率定义: 功率相似定律:功率相似定律: 轴功率的相似关系为:轴功率的相似关系为: hpvpmpmvmm hmvmmmpvpp m p Hq Hq P P n对设计精良的泵与风机,流动效率和容积效率 均趋于稳定; n原形和模型的转速比值在1-2以内时,机械效 率可认为相等。 3 2 2 vppp vmmm qDn qDn 22 2 2 ppp mmm HDn HDn 22 2 2 m p m p m p m p n n D D p p m p m p m p m p

9、n n D D P P 35 2 2 相似定律总结相似定律总结 n1 1、比例定律变速运行、比例定律变速运行 1; 1 m p m p D D vpp vmm qn qn 2 pp mm Hn Hn 2 pp mm pn pn 3 pp mm Pn Pn 尺寸相同、输送流体一致,转速不同尺寸相同、输送流体一致,转速不同 n2 2、几何放大系列设计、几何放大系列设计 1; 1 m p m p n n 3 2 2 vpp vmm qD qD 2 2 2 pp mm HD HD 2 2 2 pp mm pD pD 5 2 2 pp mm PD PD n3 3、改变密度、改变密度流体种类、气体温度等改

10、变流体种类、气体温度等改变 1; 1 2 2 m p m p D D n n pp mm p p pp mm P P vpvm qq pm HH np、qv和n不能综合反映泵或风机性能的参数,能否找 到一个参数,一看它的大小,就可知风机的大致性能, 如是什么型式,是大流量还是大能头,叶轮的大体形 状如何,流道是宽还是窄,是长还是短,效率是高还 是低。 n包含qv、H、n在内的综合相似特征数 n衡量相似叶轮的共性 2 3 2 2 3 2 pp vm pp vp nD q nD q 3 22 2 3 22 2 mm m pp p nD H nD H 3 24 3 24 m vmm p vpp H

11、qn H qn 33 44 pvp mvm pm nq nq HH 常数 由流量相似定律可得: 3 2 33 222 vppp vv vmmm m qDn qq qDnD nD n p 4 3 H qn n v s 4 3 65 . 3 H qn n v s 4 3 20 p qn n v y 比转数定义:比转数定义: 泵:泵: 风机:风机: p20t=20,pamb=101.3103pa时气体的全压时气体的全压 我国习惯:我国习惯: n对风机而言,一般工况(非常态)下,气体密度会改 变,导致全压改变。 p pp2 . 1 20 20 3 4 (1.2) v y n q n p 则有:则有:

12、3 4 20 v y n q n p n1、比转数作为一个综合特征数 是唯一的,对应最高效率点的 参数(从性能曲线上看,对同 一台泵,可以计算无数个ns数 值,但比转数本身是唯一的) 3 4 3.65 v s n q n H i 3 4 3.65 2 v s q n n H 3 4 3.65 2 v s q n n H i 国外近年多使用无因次比转数:国外近年多使用无因次比转数: 国际标准化组织国际标准化组织TSO/TCTSO/TC在国际标准中定义了型式数,在国际标准中定义了型式数, 取代了过去的比转数。取代了过去的比转数。 3、相似泵与风机的比转数一定相等;比转数相等的泵与不一定相似。 (因

13、为同比转数的泵或风机可设计成不同的型式) 4、泵与风机的比转数是有因次的,m3/4s-3/2。 4 3 gH qn n v so 4 3 60 2 gH qn K v 型式数型式数K: 换算:换算:n ns s=193.2K =193.2K ;K=0.0051759 nK=0.0051759 ns s v 33 44 3.65q3.65 5200 562/3600 90.9 /2155/6 s n n H i 例:锅炉给水泵,叶轮级数例:锅炉给水泵,叶轮级数i=6,单吸,最高效率点处的流量,单吸,最高效率点处的流量 为为qv=562m3/h,扬程,扬程H=2155m,转速,转速n=5200r/

14、min,泵效,泵效 率率82,试求叶轮的比转数。,试求叶轮的比转数。 该泵属于中比转数离心泵该泵属于中比转数离心泵 n从比转数公式可以看出,当n不变时, H越大,qv越小,则 ns越小; n提高H需要增加叶轮外径D2; nqv减小,b2应当减小,叶轮将趋向于扁平;ns很小的叶轮将 难以制造,其效率也会很低。 4 3 65. 3 H qn n v s n当ns增加,H降低,qv增加,D2减小, b2增大,叶轮短而宽。 n当D2/D1降低到一定数值后,叶轮前后 盖板处的流线长度差别很大,容易引起 二次回流,必须采用斜切,使出口倾斜, 从而导致叶轮向轴流式过渡。 n一般而言,泵ns30,风机ny1.

15、8 (ns30时采 用容积泵) n离心泵:低n s=3080;中ns=80150;高 ns=150300; n混流泵:ns=300500; n轴流泵:ns=5001000 nny=2.712为前弯式离心风机, ny=3.616.6为 后弯式离心风机,ny=1836为轴流式风机。 n用设计参数qv 、H(p)、n计算比转数,用该比转数 选择模型,按相似定律进行放大设计。 比转数增加,叶轮形状由离 心式向轴流式转变。 qv-H曲线下降加快; qv-P曲线由增长趋势变为下降趋势 qv-曲线变陡直,高效率范围变窄 。因此为了克服功率变化急剧和高 效区窄的缺点,轴流式泵与风机采 用可调叶片,使其工况改变

16、时,保 持高效率。 n nS S小时:小时:H H 随随q qv v的增大下降平缓的增大下降平缓 n nS S大时:大时:H H 随随q qv v的增大下降陡降的增大下降陡降 n nS S小时:小时:P P 随随q qv v的增大而增加,的增大而增加,呈上升状(呈上升状(n ns s200200)。)。 随随n nS S增大增大q qv v P P 变得平坦。变得平坦。 当当n nS S再增大再增大P P 随随q qv v的增加而的增加而减小,减小,q qv v P P 呈下降状(呈下降状(n ns s=700=700)。)。 n nS S小时:小时:q qv v 平坦高效区较宽平坦高效区较宽

17、 n nS S越大越大q qv v 越陡高效区越窄越陡高效区越窄 轴流式泵与风机具有高效区窄轴流式泵与风机具有高效区窄的缺点,采用可调叶片解决。的缺点,采用可调叶片解决。 n流量系数(无因次数) 由流量相似定律 pp vm pp vp m p m p vm vp nD q nD q n n D D q q 3 2 3 2 3 2 2 22 2222 460 460 vp vm pppmmm q q DD nDD n 则可以:则可以: 22 222222 460 460 vp vmv v pppmmm q qq q DD nDD nu A 常数 无因次性能曲线无因次性能曲线 n压力系数 由压力相

18、似定律 22 2 2 m p m p m p m p n n D D p p p u p nD p nD p pp p p mm m m 2 2 2 2 2 2 60 60 则:则: 无因次性能曲线无因次性能曲线 n功率系数 由功率相似 得: m p m p m p m p n n D D P P 35 2 2 P uA P nDD P nDD P mmm m m ppp p p 3 22 3 2 2 2 3 2 2 2 1000 604 1000 604 1000 无因次性能曲线无因次性能曲线 n效率 22 v v q q u A p P v q 由已知叶轮尺寸和转速下的qv-p,qv-P,

19、qv-曲线,对 曲线上任意点的参数,按上述进行无量纲处理,得到对 应的无因次性能参数,以流量系数为横坐标,分别以压 力系数、功率系数和效率为纵坐标,做出无因次性能曲 线。 2 2 p p u 3 22 1000P P A u 无因次性能曲线无因次性能曲线 同 一 系 列 的 泵 与 风 机 只 有 一 组 无 因 次 性 能 曲线。 无因次性能曲线无因次性能曲线 n由无因次性能曲线确定实际曲线 n已知无因次性能曲线,叶轮尺寸、转速,则 : vvvv q nD q nDD quAq 32.24604 3 22 2 2 22 p Dn p nD pup 30460 2 2 2 2 2 2 2 P

20、Dn P nDD P uA P 7391590 1000/ 6041000 5 2 3 3 2 2 2 3 22 4 2 2 4 22 2 2 131. 1 16 v v v v qp pq qp pq D 通用性能曲线通用性能曲线 变速通用性能曲线变速通用性能曲线 变角通用性能曲线变角通用性能曲线 变速通用性能曲线变速通用性能曲线 1、定义:将不同转速的、定义:将不同转速的q qv v H H 曲线及等效率曲线绘制在同一张曲线及等效率曲线绘制在同一张 图上所成的曲线叫做变速通用性能曲线。图上所成的曲线叫做变速通用性能曲线。 2 2、绘制方法、绘制方法 a a、用比例定律换算求得;、用比例定律

21、换算求得; b b、用试验方法求得(制造厂提供的通用性能曲线)、用试验方法求得(制造厂提供的通用性能曲线) 3 3、用比例定律进行换算:、用比例定律进行换算: n将不同转速的性 能曲线和等效率 曲线绘制在一张 图上,构成通用 性能曲线 已知已知n n1 1下的性能曲线,求下的性能曲线,求n n2 2、n n3 3 下的性能曲线:下的性能曲线: 代入比例律代入比例律q qv2 v2 = =( (n n2 2 /n /n1 1)q qv1 v1 , , H H2 2= =(n n2 2 /n /n1 1)2 2H H1 1 ; ;求得求得n n2 2 时与时与 n n1 1 时对应 时对应 的相似

22、工况点的相似工况点1 1 、2 2 、 i i ; 将将1 1 、2 2 i i 点用光滑曲线点用光滑曲线 连接,则得连接,则得n n2 2 时的时的q qv v H H 曲线;曲线; 同理可得同理可得n n3 3、n n4 4、n n5 5下的下的 q qv v H H 曲线。见右图。曲线。见右图。 绘制方法:绘制方法: 在在n n1 1下的下的q qv v H H 曲线上取任意曲线上取任意 点点1 1、2 2、i i 等的等的q qv v与与 H H ; 4、相似工况抛物线:、相似工况抛物线: 式中:式中:K比例常数(相似工况的等效率常数)。比例常数(相似工况的等效率常数)。 1 2 1

23、2 n n q q v v 2 1 2 1 2 n n H H 2 1 2 1 2 v v q q H H K q H q H q H vvv 22 2 2 2 1 1 2 v KqH 由式:由式: 得:得: 即:即: 或:或: 满足抛物线方程的工况点,为相似工况点;满足抛物线方程的工况点,为相似工况点; 意义与特点:意义与特点: 试验所得的等效率曲线为不通过原点而连成椭圆形状,这种 理论与实际的差别在于:当转速变化幅度较大时,各种损失 有较大幅度的变化,已不符合比例律损失不变的情况。 5、用途:用于变速工况调节。 相似工况抛物线又称等效率曲线,等效率曲线通过坐标原点。 变角通用性能曲线变角通用性能曲线 2、绘制方法:用试验方法求得(制造厂提供的通用性能曲线)。 1、定义:将轴流式泵与风机不同叶片安装角下的qvH曲线、等 轴功率曲线及等效率曲线绘制在同一张图上所成的曲线叫做 变角通用性能曲线。 作业题: n叶轮外径为叶轮外径为600mm的送风机,当以圆周速度的送风机,当以圆周速度 (外径处外径处)60m/s运转时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论