




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Digital Signal Processing Chapter 6 Structures for Discrete-Time Systems 2 6.0 Introduction Several ways to describe discrete-time systems: Impulse responses in time domain. Difference equations in time domain. The z transforms in complex frequency domain (transfer functions). Fourier transforms in
2、frequency domain (Frequency response). H(ej) = |H(ej)|ej() N i i i M l l l za zb zX zY zH 1 0 1 )( )( )( 3 6.1 Description of the Digital Filter Structures Its difference equations in time domain is 10 ( )()() NM il il y na y nib x nl 将输入加以延时,组成 M 节的延时网络,把每 个延时抽头后加权,然 后把结果相加。 将输出加以延时,组成 N 节的延时网络,把每
3、个延时抽头后加权,然 后把结果相加。 因此,网络结构表示一定的运算结构,不同结构所需要因此,网络结构表示一定的运算结构,不同结构所需要 的存储单元以及运算次数不同,前者影响结构复杂性,的存储单元以及运算次数不同,前者影响结构复杂性, 后者影响运算速度。后者影响运算速度。 4 6.1 Description of the Digital Filter Structures Three basic elements to implement digital filters: Delay Multiplier Adder Block diagram(方框图)representation of thr
4、ee basic elements. z1 X(z) x(n)x(n 1) z1X(z) x(n) X(z) k k X(z) k x(n) x1(n) X1(z) x2(n)X2(z) x1(n) + x2(n) X1(z) + X2(z) 5 6.1 Description of the Digital Filter Structures Signal flowgraph(信号流图)representation of three basic elements. X(z) x(n)x(n 1) z1X(z) z1 x1(n) X1(z) x2(n)X2(z) x1(n) + x2(n) X1
5、(z) + X2(z) X(z) x(n)k x(n) k X(z) k 6 6.1 Description of the Digital Filter Structures Two classes of digital filters: Finite-duration impulse response filters or nonrecursive filters. Its transfer functions are of the polynomial form. Infinite-duration impulse response filters or recursive filters
6、. Its transfer functions are of the rational polynomial form. 7 6.3 Basic structures for IIR digital filters 6.3.1 Direct form I The transfer function of a recursive filter is given by And the difference equations in time domain is In general, M N. 0 1 ( ) ( ) ( ) 1 M i i i N i i i b z N z H z D z a
7、 z M i i N i i inxbinyany 01 )()()( 8 6.3.1 Direct forms I x(n)y(n) z1 z1 b0 b1 b2 z1 bM bM1 z1 z1 z1 a1 a2 aN1 aN y(n1) y(n2) y(nN) x(n1) x(n2) x(nM) M i i N i i inxbinyany 01 )()()( 0 1 ( ) 1 M i i i N i i i b z H z a z 9 6.3.1 Direct forms I x(n)y(n) b0 b1 b2 bM bM1 z1 z1 z1 a1 a2 aN1 aN Direct f
8、orms I structure for IIR digital filters 10 6.3.2 Direct forms II x(n)y(n) z1 z1 b0 b1 b2 z1 bM bM1 z1 z1 z1 a1 a2 aN1 aN 1 ( )( ) ( ) H zN z D z 11 6.3.2 Direct forms II x(n)y(n) b0 b1 b2 bM bM1 z1 z1 z1 a1 a2 aN1 aN Direct forms II structure for IIR digital filters 12 Comparison of the two types x
9、(n)y(n) b0 b1 b2 bM bM1 z1 z1 z1 a1 a2 aN1 aN Direct forms I x(n)y(n) b0 b1 b2 bM bM1 z1 z1 z1 a1 a2 aN1 aN Direct forms II 13 Example 1 Compute H(z) from the following signal flowgraph. Solution: x(n)y(n) 1/4 z1 z1 1/4 -3/8 2 1 1 12 12 1 2 162 4 ( ) 13 823 1 48 z z H z zz zz 14 6.3.3 Cascade form W
10、riting the numerator and denominator polynomials of H(z) as products of second-order factors, respectively, we have that 12 012 0 12 1 12 1 1( ) ( ) ( )1 1 M i im ikk N i k kk i i b z zzN z H zH D zm zm z a z x(n)y(n) 11 z1 z1 m11 m2121 1m z1 z1 m1m m2m2m H0 15 6.3.4 Parallel form H(z) can also be e
11、xpressed as an addition of second- order partial-fractions, such that 0 1 1 01 12 1 12 ( ) ( ) ( ) 1 1 M i i i N i i i m kk k kk N z H z D z b z a z z m zm z x(n)y(n) 11 z1 z1 m11 m21 z1 z1 m1m m2m 0m 01 1m 16 Example 2 Figure the signal flowgraph of the following system by the direct form (type I a
12、nd II), cascade form and parallel form. Solution: 311 ( )(1)(2)( )(1) 483 y ny ny nx nx n x(n)y(n) 1/3 z1 z1 3/4 -1/8 Type II x(n) y(n) 3/4 -1/8 z1 z1 1/3 Type I 17 Example 2 x(n)y(n) 1/3 z1 1/4 z1 1/2 Cascade form 121 111 1211 11 311 ( )(1)(2)( )(1) 483 311 ( )( )( )( )( ) 483 111 111 1 333 ( ) 311
13、111 11111 484242 y ny ny nx nx n Y zz Y zz Y zX zz X z zzz H z zzzzzz 18 Example 2 11 1211 11 11710 11 3333 ( ) 311111 11111 484242 zz H z zzzzzz x(n)y(n) z1 1/4 z1 1/2 10/3 -7/3 Parallel form 19 Example 3 Determine the transfer function of the system below: x(n)y(n) z1 1/3 z1 1/5 -15/2 -3 1 11 1511
14、 3 ( ) 11 2 11 35 z H z zz 1 15111 ( )( )( )( )3(1) 2355 nnn h nnu nu nu n 20 6.5 Basic structures for FIR digital filters The difference equation of FIR filters 0 0 0 0 ( )() ( )( ) () ( )( )( ) ( ) ( )( ) ( ) M l l M l M l l M l l y nb x nl y nh l x nl Y zh l z X z Y z H zh l z X z 21 6.5.1 Direct
15、 form x(n) y(n) z1z1z1 h(0)h(1)h(2)h(M1) h(M) 0 0 12 ( )( ) () ( ) ( )( ) ( ) (0)(1)(2)() M l M l l M y nh l x nl Y z H zh l z X z hhzhzh M z 22 6.5.1 Direct form Transposed direct form(直接型结构的转置) 0 ( )( ) M l l H zh l z x(n) y(n) z1z1z1 h(0)h(1)h(2)h(M1)h(M) 23 Example 4 Compute the transfer functio
16、n given by the signal flowgraph and the direct form of H(z). x(n) y(n) h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7) h(8) 3 z 3 z 1 z 1 z 24 Example 4 1234 5678 8 0 ( ) (0)(1)(2)(3)(4) (5)(6)(7)(8)( ) ( )( ) n n Y zhhzhzhzhz hzhzhzhzX z X zh n z x(n) y(n) z1z1z1 h(0)h(1)h(2)h(3)h(4)h(5)h(6)h(7)h(8) z1z1z1
17、z1z1 25 6.5.2 Cascade form Writing H(z) as a product of second-order factors, we get that 112 012 01 is even 2 ( )( )(), 1 is odd 2 NM kkk lk M M H zh l zzzN M M x(n)y(n) z1 z1 01 11 21 z1 z1 02 12 22 z1 z1 2N 1N 0N 26 6.5.3 Linear-phase forms(线性相位型) An important subclass of FIR digital filters is t
18、he one that includes linear-phase filters, that is and the frequency response has the following form )( () ()() () ( ) jjj jjj jj H eH ee H ee Be 27 6.5.3 Linear-phase forms where b(n) is the inverse Fourier transform of B(), and Since B() is real, So 11 ( )()( ) 22 ( ) 2 () jj njjj n j jj n j h nH
19、eedBeed e Beed e b n * ( )()b nbn * ()() jj eh ne hn *2 ()() j h nhne ( )() j b neh n 28 6.5.3 Linear-phase forms In the common case where all the filter coefficients are real, so If h(n) is causal, that is h(n) = 0, for n 2. So, This equation shows that the h(n) of a linear-phase filter is symmetri
20、c or antisymmetric about M/2. MnnMhnh M Mnnhnh 0),()( 2 0),2()( 2 ()()()( )(2 ) j h nhnehnh nhn * ()() and , 2 k hnhnkZ 29 6.5.3 Linear-phase forms n h(n) 2103 4 5 6 7 8n h(n) 2103 4 5 6 7 8 9 n h(n) 2103 4 5 6 7 8 n h(n) 2103 4 5 6 7 8 9 symmetric antisymmetric M even M odd Type IType II Type IIITy
21、pe IV 30 6.5.3 Linear-phase forms: type I ( )(), is evenh nh MnM 1 2 2 0 1 2 11 22 () 2 00 1 2 () 2 0 ( )( )()( ) 2 ( )()() 2 ( )() 2 M M M nn M n n MM M nMn nn M M nMn n M H zh n zhzh n z M h n zhzh Mn z M h nzzhz 31 6.5.3 Linear-phase forms: type I x(n) y(n) z1z1z1 h(0)h(1)h(2)h(M/2) z1z1z1 h(M/21
22、) 1 2 () 2 0 ( )( )() 2 M M nMn n M H zh nzzhz 32 6.5.3 Linear-phase forms: type II ( )(), is oddh nh MnM 1 2 1 0 2 11 22 () 00 1 2 () 0 ( )( )( ) ( )() ( ) M M nn M n n MM nMn nn M nMn n H zh n zh n z h n zh Mn z h nzz 33 6.5.3 Linear-phase forms: type II x(n) y(n) z1z1z1 h(0)h(1)h(2) z1z1 z1 z1 2
23、3M h 2 1M h 1 2 () 0 ( )( ) M nMn n H zh nzz 34 6.5.3 Linear-phase forms: type III ( )(), is evenh nh MnM 1 2 0 1 2 11 22 () 00 1 2 () 0 ( )( )( ) ( )() ( ) M M nn M n n MM nMn nn M nMn n H zh n zh n z h n zh Mn z h nzz 35 6.5.3 Linear-phase forms: type III x(n) y(n) z1z1z1 h(0)h(1)h(2) z1z1z1 h(M/2
24、1) 1111 1 2 () 0 ( )( ) M nMn n H zh nzz 36 6.5.3 Linear-phase forms: type IV ( )(), is oddh nh MnM 1 2 1 0 2 1 1 22 () 00 1 2 () 0 ( )( )( ) ( )() ( ) M M nn M n n MM nMn nn M nMn n H zh n zh n z h n zh Mn z h nzz 37 6.5.3 Linear-phase forms: type IV x(n) y(n) z1z1z1 h(0)h(1)h(2) z1z1 z1 z1 2 3M h
25、2 1M h 11111 1 2 () 0 ( )( ) M nMn n H zh nzz 38 Example 5 Draw the signal flow-gragh of the direct form and linear-phase form for the FIR system. Solution: direct form ( )( )2 (1)3 (2)4 (3) 3 (4)2 (5)(6) h nnnnn nnn 123456 ( )1 23432H zzzzzzz x(n) y(n) z1z1z1 1-23-21 z1z1 3-4 z1 39 Example 5 Linear
26、-phase form 123456 615243 ( )1 23432 (1)2()3()4 H zzzzzzz zzzzzz x(n) y(n) z1z1z1 1-23-4 z1z1z1 40 6.5.3 Linear-phase forms Clearly, the linear-phase form structure requires about 50% fewer multiplications than that of the direct forms. 41 Digital network analysis The analysis of digital networks is realized through the signal flow graph representation. A digital network
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司服务日活动方案
- 解决方案服务协议书范本
- 教育媒体资源与学生学习成效的关系
- 中国中医针灸产品市场运行态势及行业发展前景预测报告
- 建筑行业施工安全管理与规范
- 应对媒体与公众沟通策略
- 建筑业的新材料研究与工程实践应用报告
- 提高儿童体育参与度的策略分析
- 教育心理学优化学生学习体验的技巧
- 资本结构的动态调整对企业财务稳健性的影响
- 电子政务内网机房运维管理制度
- 2025年北京高考化学试卷试题真题及答案详解(精校打印版)
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 福利院财务管理制度
- 学习通《科研诚信与学术规范》课后及考试答案
- GB/T 24025-2009环境标志和声明Ⅲ型环境声明原则和程序
- 《半导体及二极管》教学课件
- 病房床头卡模板
- 2022年西双版纳傣族自治州景洪教师进城考试笔试题库及答案解析
- 公路改建工程边施工边通车安全专项施工方案
- 道路交通安全法律法规知识测试题
评论
0/150
提交评论