版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章第二章 坐标系统和时间系统坐标系统和时间系统 第一节第一节 天球坐标系与地球坐标系统天球坐标系与地球坐标系统 一、坐标系概述一、坐标系概述 坐标系统是描述坐标系统是描述点点空间位置的参照系统,空间任何一点的位空间位置的参照系统,空间任何一点的位 置均可用最少置均可用最少3个坐标参数唯一表示,三个参数随着坐标系或坐个坐标参数唯一表示,三个参数随着坐标系或坐 标系的组合形式不同而不同。标系的组合形式不同而不同。 常用的点的坐标表示形式:常用的点的坐标表示形式: 空间直角坐标(空间直角坐标(3维形式)维形式)-(X Y Z) 大地坐标(曲线坐标、大地坐标(曲线坐标、3维形式)维形式)-(B L
2、 H) 极坐标(极坐标(3维形式)维形式)-(r ) 高斯平面投影坐标高斯平面投影坐标+正常高(正常高(2维维+1维组合)维组合)-(x y)、)、HN, 点的高斯坐标由大地坐标(点的高斯坐标由大地坐标(B、L)投影后形成,高程为正常高)投影后形成,高程为正常高 把一个坐标系统下同时拥有把一个坐标系统下同时拥有3个坐标参数的坐标系称个坐标参数的坐标系称3维坐标维坐标 系;把仅有两个坐标参数(一般为系;把仅有两个坐标参数(一般为B,L)的坐标系称二维坐标系)的坐标系称二维坐标系 二、二、GPS定位中常用到的坐标系定位中常用到的坐标系 天球坐标系天球坐标系CIS 空间直角坐标系空间直角坐标系 球面
3、坐标系球面坐标系 地球坐标系地球坐标系 地球地心地固坐标系地球地心地固坐标系 CTS坐标系、瞬时地球坐标系坐标系、瞬时地球坐标系 3维(维(BLH)()(XYZ) 地球参心地固坐标系地球参心地固坐标系 2维(维(BL)-(x,y) ITRS- WGS84-GPS E2000-GALILEO? PZ90-GLONASS CGCS2000-BDS 1954北京坐标系北京坐标系Beijing 54 1980西安坐标系西安坐标系GDZ80 地方独立坐标系地方独立坐标系 国际通用,也是各国国际通用,也是各国 坐标系的母体坐标坐标系的母体坐标 地球站心坐标系地球站心坐标系 3维(维(XYZ))(h 站心赤
4、道直角坐标系站心赤道直角坐标系 站心地平直角坐标系站心地平直角坐标系 站心极坐标系站心极坐标系 1.天球坐标系天球坐标系 以圆球为坐标基准,用来描述天体位置的坐标系;主以圆球为坐标基准,用来描述天体位置的坐标系;主 要有空间直角坐标和球面坐标两种等效坐标形式要有空间直角坐标和球面坐标两种等效坐标形式 以以S点的坐标为例点的坐标为例 两种坐标形式为:两种坐标形式为: ),( ),( rS ZYXS 22 222 tansin tancossin coscos YX Z arcrZ X Y arcrY ZYXrrX 两种天球等效坐标形式的转换关系为:两种天球等效坐标形式的转换关系为: 由于天轴(地
5、轴的延伸)指向随时间变化,其变化由于天轴(地轴的延伸)指向随时间变化,其变化 表现为岁差和章动等天文现象,天极随时间变化形成表现为岁差和章动等天文现象,天极随时间变化形成 协议极、瞬时平天极、瞬时真天极三种;天球坐标系协议极、瞬时平天极、瞬时真天极三种;天球坐标系 也随时间分为也随时间分为CIS、CISM、CIST三种时空形式三种时空形式 三者之间的关系由岁差矩阵、章动矩阵决定三者之间的关系由岁差矩阵、章动矩阵决定大地测量学基础大地测量学基础 天球坐标系天球坐标系 协议天球坐标(协议天球坐标(CIS) 瞬时平天球坐标(瞬时平天球坐标(CISM) 瞬时真天球坐标(瞬时真天球坐标(CIST) P-
6、岁差改正矩阵岁差改正矩阵 1) CIS CISM CISMt z y x p z y x AAA AYAXAZ Z RRZRP , )()()90( 岁差参数 2)瞬时平天球坐标系CISM 瞬时真天球坐标系CIST CISt z y x NP z y x 3)综合上两步GIS GIST Mtt z y x N z y x ?- , )()()( YZX RRRN 章动参数 2.地球地固坐标系:地球地固坐标系: 点在地球坐标系中的主要坐标形式有:空间直角坐点在地球坐标系中的主要坐标形式有:空间直角坐 标与大地坐标两种形式标与大地坐标两种形式 以以T点的坐标为例,两种坐标点的坐标为例,两种坐标 形
7、式为:形式为: ),( ),( HLBT ZYXT 两种地球等效地球坐标形式的转换关系为:两种地球等效地球坐标形式的转换关系为: BHeNZ LBHNY LBHNX sin)1( sincos)( coscos)( 2 )1(sin/ )1(/ )(arctan /arctan 2 222 eNBZH HeNYXHNZB XYL 由于地轴指向随时间变化,其变化表现为地轴北极的极移,由于地轴指向随时间变化,其变化表现为地轴北极的极移, 使地球极随时间变化形成瞬时极、平极(协议极),相应的赤使地球极随时间变化形成瞬时极、平极(协议极),相应的赤 道又分为平赤道面、协议赤道面;极移又称道又分为平赤道
8、面、协议赤道面;极移又称S.C.Chandler运动;运动; 地球坐标系又随时间分为地球坐标系又随时间分为CTS、CTST两种时空形式两种时空形式 1)瞬时真地球坐标(瞬时真地球坐标(CTST) -协议地球坐标协议地球坐标(CTS)转换转换 tCTS z y x M z y x 1 10 01 pp p p yx y x M 旋转矩阵旋转矩阵极移矩阵极移矩阵 3.瞬时真天球坐标瞬时真天球坐标-瞬时真地球坐标(瞬时真地球坐标(天地转换天地转换) T Z t Z Y X GASTR z y x )( 100 0cossin 0sincos GASTGAST GASTGAST RZ 旋转矩阵,其中旋
9、转矩阵,其中GAST为格林尼治视恒星时角为格林尼治视恒星时角 4.天地坐标转换过程天地坐标转换过程 CIS-CISM-CIST-CTST-CTS 上述转换过程可用于上述转换过程可用于GNSS卫星卫星(飞行中的已知点)(飞行中的已知点)坐坐 标的转换标的转换 如如GPS卫星转换:由卫星星历提供卫星转换:由卫星星历提供Kepler根数计算卫根数计算卫 星的轨道坐标星的轨道坐标-协议天球坐标系中的坐标协议天球坐标系中的坐标-瞬时平天瞬时平天 球坐标系球坐标系-瞬时真天球坐标瞬时真天球坐标-瞬时地球坐标瞬时地球坐标-协议地协议地 球坐标(美国的球坐标(美国的WGS84) WGS-84定义: 原点位于地
10、球质心,Z轴指向BIH1984.0定义的协议地球极(CTP- Conventional Terrestrial System)方向,X轴指向BIHl984.0的零子 午面和CIP-Conventional international pole赤道的交点,Y轴与Z- O-X平面构成右手坐标系。 WGS-84椭球参数: 长半轴a6378137土2m; 地心引力常数(含大气层) GM(3986005l 0.6)l08(m3s-2) 正常化二阶带谐系数 48416685*10-61.3 l0-9 地球自转角速度 729211510-11土0.150010-11(rads-1) 利用以上4个基本常数,可
11、以计算出其它的椭球常数,如第一、 第二偏心率e2、e2和扁率 定义定义 原点位于地球质心,Z轴指向IERS推荐的协议地球极(1900 1905平均极)方向,X轴指向地球赤道与BIH定义的零子午面交 点,Y轴与Z-O-X平面构成右手坐标系。 PZ-90坐标基准参数 地球平均半径Re=6378136m 地球自转角速度 =0.000 072 921 15rad/s 地球引力常数GMe=398 600.4km3/s-2 地球重力场系数 -0.001 082 63 0 2 C 定义定义 原点位于包括和大气的整个地球质心,Z轴指向初始为(IRP) BHI1984.0方向,经推算指向至参考历元为2000.0
12、 地球参考极, X轴指向地球赤道与IERS定义的零子午面(IRM)垂直于Z轴的方 向,Y轴与Z-O-X平面构成右手坐标系;2008年7月1日启用。 0 . 0 5 . 2 0 . 0 0 . 10 . 00 . 0 0 . 00 . 1109 . 1 0 . 0109 . 10 . 1 90 6 6 84PZWGS z y x z y x 两者在空间三维坐标状态下之差为两者在空间三维坐标状态下之差为cm级级 2-1 WGS-84/GPS与与PZ-90/ GLONASS坐标系转换模型坐标系转换模型: CGCS2000坐标基准参数 地球平均半径Re=6378137m 地球自转角速度 =7.2 92
13、115 10-5 rad/s-1 地球引力常数GMe=3.98 6004418 104km3/s-2 地球动力形状因子J2=-0.001082629832258 正常椭球与参考椭球一致 CGCS2000由三个层次的站网与坐标实现与维持 第1层次:A级GNSS卫星定位连续运行参考网,用于全球地球 动力学、地壳形变测量、卫星精密定轨测量,用GPS、 GLONASS、VLBI、SLR等技术手段测量。 第2层次:B级GNSS大地网,国家二等大地控制网,用于建立 地方或城市坐标基准框架,区域地球动力学和地壳形变测量、 精密工程测量等 2000椭球几何参数椭球几何参数 a6378137m f=1/298.
14、257222101 第3层次:GNSS C、D、D、E级网和天文大地网,用于建立三 等及以下控制网测量和工程测量 都属于CTS坐标,三维坐标;都至少有(XYZ)(BLH)两 种坐标形式和投影坐标(x,y)形式 都源于ITRS(或其实现ITRF) 都是本系统单点定位或称绝对定位的坐标,以及相对定位中 解算的基线向量的本坐标系 同属地球地心、地固坐标系 三种坐标系在三维层面的坐标之差为cm级,三维层面可有全 球统一的转换参数,如PZ-90/WGS-84之转换关系式(2-1)式 1.1954北京坐标系 坐标基准:克拉索夫斯基椭球,仅几何参数,无明 确物理参数,正常重力计算采用赫尔黙特公式;几何 参数
15、 大地原点:前苏联普尔科沃镇 2.1980西安坐标系,GDZ80 坐标基准:IUGG1975国际椭球 大地原点:陕西省泾阳县永乐镇 3 .298/1 6378245 a 1980西安坐标系(参心坐标系)还进行了如下定义: 椭球短轴Z轴平行于由地球地心指向1968.0地极原点 (JYD)的方向;大地起始子午面平行于格林尼治平均 天文台子午面,X轴在大地起始子午面与Z轴垂直指 向经度零方向;y轴与Z,X轴成右手坐标系。从而确 保了GDZ80坐标系椭球定向、定位的明确性,克服了 1954北京坐标缺点。 IUGG1975国际椭球赋予了明确物理意义,给出了相 应椭球参数: 111 8 2 238 107
16、292115 10) 1108263( 10) 33986005( 56378140 srad J smG ma M 257.298/1 6378140 a 可导出如下几何参数 3.国家大地原点国家大地原点 大地原点:国家水平大地控制网点大地坐标的起算点。 大地起算数据:体现在大地原点上,共有四个个,包括大地原 点的大地坐标值L0、B0、H0,以及大地原点至某一方向的大地方 位角A0,这些数据构成了经典大地测量的基准。 陕西泾陕西泾 阳县永阳县永 乐镇大乐镇大 地原点地原点 外 部 内 景 第三节第三节 坐标系统之间的转换坐标系统之间的转换 一、转换的主要形式(复习一、转换的主要形式(复习大地
17、测量基础大地测量基础内容)内容) 1.同一坐标系统内不同坐标形式的变换同一坐标系统内不同坐标形式的变换 1)大地坐标与空间直角坐标间等价变换)大地坐标与空间直角坐标间等价变换 )()(XYZBLH 2)球面(大地)坐标与平面坐标间投影变换)球面(大地)坐标与平面坐标间投影变换 ),()(yxBL 3)空间直角坐标与极坐标间等价变换)空间直角坐标与极坐标间等价变换 )()(hrXYZ 有关模型在有关模型在大地测量基础大地测量基础和本章和本章1,2节已述及节已述及 N HH 2.不同坐标系统间的转换不同坐标系统间的转换 统一规定:下标统一规定:下标A目标坐标系;下标目标坐标系;下标B源坐标系源坐标
18、系 1)不同空间直角坐标间坐标转换)不同空间直角坐标间坐标转换 BA XYZXYZ)()( A XY XZ YZ B Z Y X m Z Y X Z Y X 1 1 1 )1 ( 0 0 0 平移 矩阵 尺度 系数 旋转 矩阵 两空间直角坐标系坐标转换模型中有7个转换参数。 其中平移参数3个、旋转参数3个、尺度参数1个。 除上述布尔萨模型外,还有莫洛金斯基、武测等模型除上述布尔萨模型外,还有莫洛金斯基、武测等模型 2)不同球面(大地)坐标间坐标转换)不同球面(大地)坐标间坐标转换 BA BLHBLH)()( 0 0 0 sincos 0 coscos sincossinsincos cosco
19、scossinsin X Y LL NHB Z NHB dL BLBLB dB MHMHMH dH BLBLB 2 22 22 0 cossin1 sincos0sincos sincossinsincoscos 1sin0 X Y Z tgBLtgBL N LLeBB M NeBBLNeBBL NeB m 22 2 22222 00 2sin sincossincos 1 1sin1sinsin 1 MeB N eBBBB MH aMH NM eBeBB a da d 3)不同平面坐标间坐标转换)不同平面坐标间坐标转换 BA yxyx),(),( B o o A y x m y x y x
20、cossin sincos )1 ( 4)GNSS测量中,不同坐标间转换主要是下列两种测量中,不同坐标间转换主要是下列两种 BA yxyx),(),()2( BA XYZXYZ)()() 1 ( 另有三维七参、二维七参、二维 四参等多种转换模型;参见大 地测量学基础和其它专业书籍 二、不同坐标间转换基本步骤二、不同坐标间转换基本步骤 (1)模型选择 大范围坐标转换选择二维七参数转换模型;小区域坐标转 换可选择三维四参数模型或平面四参数模型。 对于相对独立的平面坐标系统与GNSS坐标系的联系可采用平 面四参数模型或多项式回归模型。 (2)重合点选取 布GNSS网时应初步选用具有目标坐标系坐标的点
21、做重合点, 这些点的GNSS坐标(源坐标系)一经测定就有两套坐标可用。 最终选定重合点时还要根据所确定的转换参数,计算重合点 坐标残差,根据其残差值的大小来最后确定,若残差大于3 倍中误差则剔除,重新计算坐标转换参数,直到满足精度要 求为止;用于求二维平面四参数转换的最终重合点数量不少 于2个,七参数转换的不少于3个。 (3)模型参数计算 以转换模型为基础方程,将重合点的两套坐标数据代入模型求 转换参数,有多余重合点时应应用最小二乘原理求转换参数的 最或然解。 (4)精度评估与检核 选择部分重合点作为外部检核点,不参与转换参数计算,用转 换参数计算这些点的转换坐标与已知坐标进行比较进行外部检
22、核。 应选定至少6个均匀分布的重合点对坐标转换精度进行检核 三、附标准转换模型(供实用)三、附标准转换模型(供实用) (1 1)二维七参数转换模型)二维七参数转换模型 2 22 2 sincos 0 coscos sincossinsincos 0 cossin1 sincos0sincos 00 (2sin) sincos 1 x y z LL X L NBNB Y BBLBLB Z MMM tgBLtgBL m N LLeBB M NeB eBB Ma sincos a BBf f 同一点位在两个坐标系下的纬度差经度差,单位为弧度 椭球长半轴差(单位米)、扁率差(无量纲), 平移参数,单位
23、为米, 旋转参数,单位为弧度, 尺度参数(无量纲) ,BL , af ,XYZ , xyz m (2 2)平面四参数转换模型)平面四参数转换模型 其中,x0,y0为平移参数,为旋转参数,m为尺度参数。 x2,y2为2000国家大地坐标系下的平面直角坐标,x1,y1为 原坐标系下平面直角坐标。坐标单位为米。 1 1 0 0 2 2 cossin sincos )1 ( y x m y x y x (3 3)BursaBursa七参数坐标转换模型七参数坐标转换模型 S S S S S S Z Y X SS SS SS T T T Z Y X Z Y X m XY XZ YZ Z Y X Z Y X
24、 0 0 0 22 22 sincos 0 ()cos()cos sincossinsincos ()()() coscossinsinsin (1)(1) cossin1 ()sin LL XLNHBNHB YBBLBLB MHMHMHZH BLBLB NeHNeH tgBLtgBL NHNH NHNeB 22 22 2 22 22 2 22 ()sin 0sincos 0 sincossinsincoscos 0 sincos ()sin 00 (2sin) sincossincos 1 (1sin) (1 1 x y z B NHNeB LL MHMH NeBBLNeBBL N eBBm
25、 M NHNe eBN BBeBB fMa N M eB a a 222 sin)sin a f eBB (4 4)三维七参数坐标转换模型)三维七参数坐标转换模型 (5 5)坐标转换精度评定和评估方法)坐标转换精度评定和评估方法 依据计算坐标转换模型参数的重合点(没有参与转换参数计 算的重合点)的残差中误差评估坐标转换精度。对于n个点, 坐标转换精度估计公式如下: V(残差)=重合点转换坐标-重合点已知坐标 空间直角坐标X残差中误差 空间直角坐标Y残差中误差 1 X X vv M n 1 Y Y vv M n 空间直角坐标Z 残差中误差 点位中误差 平面坐标x残差中误差 1 Z Z vv M
26、n 222 ZYXp MMMM 1 x x vv M n 平面坐标y残差中误差 大地高H残差中误差 平面点位中误差为 1 y y vv M n 1 H H vv M n 22 yxp MMM (6)决定不同坐标间转换精度的因素)决定不同坐标间转换精度的因素 重合点在网中的分布状况 转换模型精度与适用性 重合点的坐标分量及点位精度 三、三、GNSS测量中涉及的其它坐标测量中涉及的其它坐标 1.站心坐标系概述站心坐标系概述 有站心赤道直角坐标系、站心地平直角坐标系和站心地平 极坐标系三种坐标系形式。 GNSS坐标计算中,常用的为站心赤道直角坐标系与站心 地平直角坐标系: 站心地平、站心赤道坐标和
27、地球空间直角坐标关系图 2.站心赤道直角坐标系站心赤道直角坐标系 定义:以测站P1为原点,且与地球空间直角坐标系,O-XYZ 相应坐标轴平行的坐标系 站心赤道坐标系与地球空间直角坐标间关系为简单的平移关 系 ZYXP 1 BHeN LBHN LBHN Z Y X Z Y X sin)1( sincos)( coscos)( 2 3.站心地平直角坐标系P1-xyz 定义:以P1为原点,过测站P1的法线为z轴,指向天 顶为正,以子午线方向为x轴,向北为正,以与x、z 垂直方向为y轴,东为正。 地平直角坐标系与站心赤道直角坐标系关系可通过 旋转变换实现,关系式如下: 地平 站心赤道 z y x PB
28、RLR Z Y X xYz )90()180( 地平 z y x BB LBLLB LBLLB sin0cos sincoscossinsin coscossincossin 4.GNSS空间直角坐标与地平直角坐标的关系 BHeN LBHN LBHN z y x BB LBLLB LBLLB Z Y X sin)1 ( sincos)( coscos)( sin0cos sincoscossinsin coscossincossin 2 ? 5.站心地平极坐标系P1rAh(用于描述测站与卫星 的相对位置) 定义:以测站P1为原点,坐标参数为: r-测站P1至卫星s的距离 A-卫星的方位角,zo
29、x平面与zos平面的夹角,左旋 为正 h-卫星的高度角os与xoy平面的夹角。 1 1)站心地平极坐标系与站心地平直角坐标系关系)站心地平极坐标系与站心地平直角坐标系关系: coshcos Arx coshsin Ary sinhrz 222 zyxr A=arc tan(y/x) h=arctan(z/(x2+y2)1/2) 四、四、GNSS卫星(飞行中的已知点)坐标计算流程卫星(飞行中的已知点)坐标计算流程 GNSS定位坐标计算流程 地面监测站监测地面监测站监测 卫星运动状态卫星运动状态 主控站处理主控站处理 注入站注入站 卫星卫星 用户获得用户获得 导航电文导航电文 导航导航 电文电文
30、计算卫星在协议天球坐标系中的坐标 计算卫星在瞬时平天球坐标系中的坐标计算卫星在瞬时平天球坐标系中的坐标 计算卫星在瞬时地球坐标系中的坐标计算卫星在瞬时地球坐标系中的坐标 通过星地距离方程解算基线通过星地距离方程解算基线 将接收机坐标转换为北京将接收机坐标转换为北京54或西安或西安80坐标坐标 计算卫星在协议地球坐标系计算卫星在协议地球坐标系CTS中的坐标中的坐标 计算卫星在轨道平面坐标系中的坐标计算卫星在轨道平面坐标系中的坐标 计算卫星在瞬时真天球坐标系中的坐标计算卫星在瞬时真天球坐标系中的坐标 卫星参考历元的卫星参考历元的Kepler参参 数数+摄动改正参数摄动改正参数=实际实际 观测历元的
31、观测历元的Kepler参数参数 计算卫星在协议天球坐标系中的坐标计算卫星在协议天球坐标系中的坐标 第四节 坐标系统间的转换 一、GNSS定位中时间的意义 GNSS定位过程是在严格的时间定义下进行的,无论 是坐标系的定义、GNSS卫星信号接收、星地距离测 量,还是坐标转换都需在严格的时间定义下完成 二、时间系统各类与构成 时间系统类型:基于各种用途,时间系统有多种: ST恒星时、MT平太阳时、UT世界时、ATI原子时、 UTC协调世界时。 时间系统构成: 由时间原点(历元),时间尺度(时间单位)构成。 1.恒星时ST(Sidereal Time) 原点:以春分点为参考点,由春分点的周日视运 动所定义的时间系统为恒星时系统。 ST尺度:春分点连续两次经过本地子午圈的时间 间隔为一恒星日,一恒星日分为24个恒星时 2.平太阳时MT(Mean SOlar Time) 平太阳:以真太阳周年运动的平均速度在天球赤道 上作周年视 运动的太阳,其周期与真太阳一致 。 时间原点:以平太阳为参考点,由平太阳的周日视 运动所定义的时间系统为平太阳时系统。 时间尺度为:平太阳连续两次经过本地子午圈的时 间间隔为一平太阳日,一平太阳日分为24平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生职业生涯与发展规划学习通超星期末考试答案章节答案2024年
- 英语综合4 (2023-2024学年2)学习通超星期末考试答案章节答案2024年
- minus-Bornyl-acetate-Standard-生命科学试剂-MCE
- 机房火灾事故应急预案
- 小学生命教育活动方案
- 创新创业大赛发言稿
- 污水处理突发事件应急预案
- 激光技术课程设计LasCAD
- 《画星星》教学设计
- 中班保育员2024年度个人工作总结
- 安全防护棚搭设检查验收表
- 人教版三年级上册公开课《分数的初步认识-几分之一》课件
- 幼儿园矛盾纠纷排查调处制度
- 20CJ94-1 隔声楼面系统-HTK轻质隔声砂浆
- 2024年4月自考00160审计学试题及答案含评分标准
- MOOC 国际商务-暨南大学 中国大学慕课答案
- “结构化教学”视域下的小学数学复习课设计 论文
- 2024年-重晶石购销合同1本月修正
- 2022年广州市白云区总工会社会化工会工作者考试试卷及答案解析
- 国家开放大学2024年《知识产权法》形考任务1-4答案
- 2024-2029年中国水上游乐园行业十四五发展分析及投资前景与战略规划研究报告
评论
0/150
提交评论