版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、外文资料翻译译文1250T的液压机滑动块稳健优化设计摘 要为了解稳定变化下影响的液压机性能如载荷,材料性能的波动,零件和工作条件的物理尺寸,早期的设计过程中需要进行优化。在本文中,滑动块,这是1250吨水压机的关键受力部件的设计参数,由邻居栽培遗传算法(NCGA)结合六西格玛强大的设计方法进行了优化。通过模拟的有限元软件ABAQUS和多学科优化软件ISIGHT,结构设计,坚固性提高达99,压力和原结构超重的问题都解决了。它证明了六西格玛稳健设计法结合NCGA可以在设计初期提高结构性能的稳定性。关键词:液压机,滑块,六西格玛的稳健设计法,邻里栽培遗传算法1 引言由于经济的快速发展,它是工业市场,
2、一直是激烈如昔驱动制造商生产更强大和可靠的产品的竞争。尽管执行情况变得越来越复杂,产品必须足够健壮以满足消费者的需求。液压机的工作状况不佳和负载情况相当复杂。在本执行中,液压机将满足负载,材料特性和所有意外的外部噪声的波动。作为这样的结果,最佳的设计参数,这使产品对噪声不敏感的影响,也就是,该产品是健壮的,应该在早期设计阶段考虑。在本文中,一个六西格玛稳健设计方法结合NCGA施加到设计用于搜索所述滑动块的最佳参数。遗传算法是一种算法,模拟生物的遗传和进化。作为遗传算法可以找到一个帕累托最优集合在多目标优化一项试验中,它是非常有效的液压机具有两个目的,最大压和体积的优化。然而,仅与遗传算法不能推
3、导参数,同时优化的平均性能和降低的性能差异。因此,一个六西格玛稳健设计方法被引入到基于由遗传算法获得的参数的设。在第2节中,NCGA算法,稳健优化设计专门六西格玛稳健优化方法的说明。然后在第3,参数化建模和集成ISIGHT原始模型在第4节介绍。在最后两节,多目标优化结果和六西格玛稳健优化设计,结果获得。2 多目标优化方法的稳健设计法2.1 邻居种植遗传算法(NCGA)多目标优化同时解决了多个目标,通过多目标遗传算法(MOGA),其中发现在一19个优化的多目标优化问题的多重最优解,并获得有效竞争的目标之间的权衡关系的方法【1】 。渡边慎也等人【2】引入了一个新的多目标遗传算法叫附近种植遗传算法(
4、NCGA),其中除了其他MOGAS,如NSGA-II【3】和SPEA2 4的机制【4】。下面的步骤说明NCGA哪里的总体流程PT:搜人口代位置:在归档一代。第1步:初始化:产生初始种群P0。人口规模为N.设置T = 0计算健身的价值最初的个人P0。副本进入P0 A0。档案大小也N.第2步:启动新的一代:设置T = T + 1。第3步:生成新的搜索人群:PT = AT-1。步骤4:排序:铂的个体被按照聚焦物镜的值进行排序。聚焦的目标是在每一个所改变。例如,当有三个目标,第一目标集中在第一代和第三目标被聚焦在第三代。第一个目标是在第四代再次集中。步骤5:分组:铂被划分成由两个个体的组。这两个人被从
5、选择顶部到排序的个体的底部。第6步:交叉和变异:在一组,执行交叉和变异操作。来自两家母公司的个体,产生两个孩子的个体。这里,父代个体被消除。步骤7:评价为:所有的个体的目标而得。步骤8:组装:所有的个体被组装成一组并且这成为新的Pt。步骤9:革新档案:组装Pt和AT-1一起。在N个人从2N个人选择。以降低个体的数量,则执行SPEA2的相同的操作(环境选择)。在NCGA,这种环境的选择是作为一个选择操作施加。步骤10:终止:检查终止条件。如果满足,模拟结束。如果不是,则模拟返回到步骤2。在NCGA,大多数遗传操作的一组由两个个体被执行。2.2 六西格玛方法优化2.2.1确定性优化和鲁棒优化的区别
6、坚固的设计是一个方法,它对立的确定性数学优化其典型地产生了推进设计约束边界的限制,而使在制造,材料和设计5很少或没有空间的不确定性的优化设计。确定性优化和鲁棒性优化之间的差异示于图1。确定性优化实现目标函数的最优解,而是将设计的变化,这可能会导致意想不到的性能敏感。另一方面,由坚固的设计得到的溶液不仅适度在最优方面中的稳健性方面良好,但也良好,即,可靠的解决方案的分散体是窄针对设计变量的分散1。确定性优化评价标准可以配制成:其中,y表示的质量性能; Y= EY是期望或平均质量特性的值;=( - y)为y的标准偏差,它表示的质量性能方差;=( - )是质量性能,表示灵敏度的绝对偏差。稳健设计的基
7、本理念是开发稳定生产这与性能6的变化最小,针对产品的进程。强大的设计方法被广泛使用,因为它们不仅可以提高产品和流程的质量,而且减少的性能变化而不消除变异的来源。图1 确定性优化和鲁棒优化比较2.2.2 六西格玛方法在80年代初,田口玄一的方法走红,作为质量改善特别是在汽车行业的一个工具。田口提供了一种专注于稳健的设计,达到成果在六西格玛运动【6】。六西格马开始与目标提供产品和服务,这似乎没有缺陷形成消费者的目光【7】。从标准差的统计概念和符号西格玛()六西格玛方法的起源通常用来表示标准偏差。缺陷数的严格的数学解释将导致不超过十亿分之二不良六西格玛标准。然而,六西格玛过程假定一个分布,可以推卸中
8、心高达+/-1.5,因此与传统的六西格玛相关的缺陷率的部分实际上是每百万3.4份。除了数学计算,六西格玛过程中还涵盖了企业理念,涉及管理,财务,客户互动和过程的可预测性方面,它向着零缺点【8】的目标作出贡献。在一个六西格玛稳健设计方法中,目标函数,同时含有均值f和标准F偏差,如下应最小。最小化:这里u和是权重因子。此外,以下不等式应该满足作为西格玛水平的制约。则:这里,n表示西格玛水平和LSL/ USL分别表示下部/上部规格限制。3 机产品仿真3.1 水压机模型聚焦液压机是1250吨至该楔形预压方法应用于帧类型。因为方便装载和更合理紧迫的优点,楔形预紧方法比螺栓预紧的更好。它是主体部分是它的身
9、体承受所有的变形力时,机器运行。机体主要由左右列,上梁,滑块,垫板,移动工作台和液压缸。结构框图如图2所示。1.柱2.上梁3.滑块4.移动工作台5.垫板图2 液压机的结构图3.2 有限元分析的前处理材料的性能如下,Q235:密度=7.86E3,弹性模量=206Gpa,屈服强度=为235Mpa,极限强度=425MPa,泊松比=0.29。据认为,所述滑动块的移动是同步的液压缸和所述滑动块的固定点是相同的与滑动块和液压缸,固定的限制,这限制整个六个自由度的连接点,施加到3的表面连接所述滑动块,并在分析液压缸。简化的模型已经采取由于大量的小的特点,对分析结果没有显著效果。 1.42MPa压力被装载在滑
10、动块的下表面上,并且4导向面被设置为表面到表面,它允许没有运动但方向相切的面连接。滑块的剖视图示于图3。图3 滑块的剖视图3.3 有限元分析(FEA)并ISIGHT集成滑动块是一个移动部件和一个重要应力成分。当在满负荷条件下,系统的最大压达为25MPa。基础研究,滑动块被视为静止状态,因此,静态分析取入本文。由有限元分析软件ABAQUS和最大应力,这是达338.2MPa,发生在滑块和液压缸的交界获得滑块的冯米塞斯应力的结果。如图4所示,滑块中心的应力比其它地方大。因此中央加强筋厚度应优化。图4 原始模型的应力分布ABAQUS的芯被控制以自动执行预处理和后处理步骤,分析所述计算的结果,作为二次开
11、发,经由编程Python语言。考虑到滑盖机型的简化,我们直接建模的ABAQUS7变量:X1X7。加强计划如图5所示,我们推导出多目标功能如下:图5 的设计变量最小化:123457V = X 1+ X2+ 2 X 3+3X4+0.6X5+0.5X6则:2X1= X2X 5= X640x26020x33040x46020x53020x630这里最大化是最大效应力在结构和V是总宽度。在本文中,多目标优化软件ISIGHT平台集成了ABAQUS。为了获得反应结果,液压机滑块模型文件被转移到ISIGHT然后传递到ABAQUS求解器来操作的有限元分析。通过ISIGHT软件提供的NCGA算法具有遗传操作上设计
12、变量和根据设定的周期数的目标时,流程图示于图6。图6 ISIGHT运行流程4 鲁棒性比较结果在NCGA确定性优化算法,人口规模为5,代数为10,交叉型为1,交叉率0.6,突变率是0.006和迭代步数为150的最大米塞斯和减少V的迭代过程分别是在图8(a)所示和(b)。图8 (a). 最大MISES NCGA迭代过程 (b). 第V NCGA迭代过程最低在表1中,它表明,最大应力降低30.54,而宽度(重量)减少11.64。因此,我们可以得出结论,多目标优化结果达到减轻重量和减少压力的目的。表1的模型优化结果的比较模型加强筋参数(mm)最大屈服强度(Mpa)V的最小(mm)原来X2=50.00,
13、X3=25.00,X4=50.00,X5=25.00, X7=25.00338.20327.50优化后X2=40.11,X3=24.90,X4=43.09,X5=29.74, X7=24.54234.90234.90然而,当单个六西格玛鲁棒检查被施加到多目标优化的结果,示出在表2该最大应力水平仅为1.55和相应的鲁棒值是77.89,V的水平是8和相应的稳健值只是89.34。很显然,在最大应力的坚固性不能满足设计要求。表2确定性优化结果六西格玛稳健检查参数名称均值标准偏差标准差成功概率X2(mm)40.100.500.800.5792597094X3(mm)25.000.500.670.5657
14、84238X4(mm)43.090.506.290.9999999997X5(mm)29.730.508.000.9999456297X7(mm)24.540.508.000.9567236452最大屈服强(Mpa)223.452.501.550.7779265486速度减少(mm)253.322.008.000.8934565246基于所述NCGA优化结果,六西格玛鲁棒性优化被应用,以2740号steps.The鲁棒性优化结果示于表3。它表明,在优化最大应力是223.17MPa和最小V是300.63。虽然最小V的有轻微的增加,最大压力减小,对最重要的,最大应力和最小诉的两个水平是8与99.9
15、999891和99.9999347分别健壮值。表2确定性优化结果六西格玛稳健检查参数名称均值标准偏差标准差成功概率X2(mm)40.071.381.230.782589585X3(mm)32.101.082.860.995811758X4(mm)53.601.803.670.999757071X5(mm)33.650.675.060.976558476X7(mm)23.970.802.770.999999591最大屈服强(Mpa)223.172.458.000.999999891速度减少(mm)300.631.968.000.9999993475 结论为了分析和优化滑动加强件的应力分布,三维模
16、型被构造和优化方法,它结合了一个多目标遗传算法,即NCGA,与六西格玛稳健设计方法,是采取。结果表明,该方法不仅可以减少滑块的最大应力和重量也达不到能够满足的稳健设计的要求的期望的鲁棒性。此方法是一般适用于其它机械结构的优化问题。致谢作者感谢文君张教授对许多宝贵的建议和很多为本文来源材料。附外文资料原文Proceedings of the 4th ICMEMInternational Conference on Mechanical Engineering and MechanicsAugust 1012, 2011, Suzhou, P. R. ChinaThe Robust Optimiz
17、ation Design of 1250T Hydraulic Press Slide BlockFan FAN1, Baochun LU1, Guojun YANG1, Yongzheng SONG2, Yulan DING31School of Mechanical Engineering, Nanjing University of Science and Technology, Jiangsu,China2Nantong Forging Equipment Co., Ltd, Jiangsu, China3Heavy forging equipment Engineering Rese
18、arch Center of Jiangsu Province, Jiangsu , ChinaAbstract: To stabilize the hydraulic press performance under the effects of variation such as the fluctuation of loading, material properties, physical dimensions of parts and operating conditions, the early design process needs to be optimized. In thi
19、s paper, the design parameters of slide block, which is the key stress part of the 1250 ton hydraulic press, are optimized by Neighborhood Cultivation Genetic Algorithm (NCGA) combined with Six Sigma robust design method. By simulated in the finite element software ABAQUS and multi-disciplinary opti
20、mized software ISIGHT, the robustness of the structure design increases up to 99%, and the problems of stress and overweight of original structure are solved. It is proved that the Six Sigma robust design method combined with NCGA can improve the stability of structure properties during the early de
21、sign stage.Keywords: Hydraulic Press, Slide Block, Six Sigma Robust Design Method, Neighborhood Cultivation Genetic Algorithm1 IntroductionSince the rapid development of the economy, it is the competition of the industrial market which has been as intense as ever that drives the manufacturer to prod
22、uce more robust and reliable product. Notwithstanding the performing situation becomes more and more complex, the product has to be robust enough to meet the demands of consumers. The hydraulic press working situation is poor and load situation is quite complex. During the performance, the hydraulic
23、 press would meet the fluctuation of load, material properties and all unexpected external noise. As a result of this, the optimum design parameters, which make the product insensitive to the effects of noise, that is, the product is robust, should be considered in the early design stage.In this pap
24、er, a Six Sigma robust design method combined with NCGA is applied to the design for searching optimal parameters of the slide block. The Genetic Algorithm is an algorithm that simulates the heredity and evolution of living things. As the GA can find a Pareto-optimum set with one trial in multi-obje
25、ctive optimization, it is very effective for the optimization of the hydraulic press which has two objective, maximum press and volume. However, only with the genetic algorithm cannot we derive parameters which simultaneously optimizing the mean performance and minimizing the performance variance. T
26、herefore, a Six Sigma robust design method is introduced into the design based on the parameters obtained by the GA.In section 2, the NCGA algorithm, robust optimal design specifically Six Sigma Robust Optimization Method are stated. Then the original model in section 3, parametric modeling and ISIG
27、HT Integration in the section 4 are presented. In the last two sections, the multi-objective optimization results and the six sigma robust optimal design results are obtained.2. Multi-objective Optimization Method and Robust Design Method2.1 Neighborhood cultivation genetic algorithm (NCGA)Multi-Obj
28、ective optimization solves the multiple objectives simultaneously via the methodology of multi-objective genetic algorithm (MOGA), which finds multiple optimal solutions of multi-objective optimization problem in one optimization and obtains the trade-off relation between competing objectives effect
29、ively【1】. Shinya Watanabe et al.【2】introduced a new multi-objective genetic algorithm called neighborhood cultivation genetic algorithm (NCGA), which has the crossover mechanism in addition to the mechanisms of other MOGAs, such as NSGA-II【3】and SPEA2【4】.The following steps illustrate the overall fl
30、ow of NCGA wherePt: search population at generationAt: archive at generation.Step 1: Initialization: Generate an initial population P0. Population size is N. Set t = 0. Calculate fitness values of theinitial individuals in P0. Copy P0 into A0. Archive size is also N.Step 2: Start new generation: set
31、 t = t + 1.Step 3: Generate new search population: Pt = At1.Step 4: Sorting: Individuals of Pt are sorted according to the values of the focused objective. The focused objective is changed at every generation. For example, when there are three objectives, the first objective is focused in the first
32、generation and the third objective is focused in the third generation. The first objective is focused again in the fourth generation.Step 5: Grouping: Pt is divided into groups consisting of two individuals. These two individuals are chosen from thetop to the bottom of the sorted individuals.Step 6:
33、 Crossover and Mutation: In a group, crossover and mutation operations are performed. From two parent individuals, two child individuals are generated. Here, parent individuals are eliminated.Step 7: Evaluation: All of the objectives of individuals are derived.Step 8: Assembling: All the individuals
34、 are assembled into one group and this becomes new Pt.Step 9: Renewing archives: Assemble Pt and At1 together. The N individuals are chosen from 2N individuals. To reduce the number of individuals, the same operation of SPEA2 (Environment Selection) is performed. In NCGA, this environment selection
35、is applied as a selection operation.Step 10: Termination: Check the terminal condition. If it is satisfied, the simulation is terminated. If not, thesimulation returns to Step 2. In NCGA, most of the genetic operations are performed in a group consisting of two individuals.2.2 Robust optimization wi
36、th six sigma method2.2.1 Difference between deterministic optimization and robust optimizationRobust design is a methodology which opposites to the deterministic mathematical optimization which typically yields the optimal design that pushes hard to the limits of design constraint boundaries, leavin
37、g little or no room for uncertainty in manufacturing, materials and design【5】. The difference between deterministic optimization and robust optimization is shown in Fig.1. The deterministic optimization achieves the optimal solution of objective function but is sensitive to the variation of design,
38、which may lead to unexpected performance. On the other hand, the solution obtained by the robust design is not only moderately good in terms of optimality but also good in terms of the robustness, that is, the dispersion of robust solution is narrow against the dispersion of the design variable【1】.
39、The evaluation criterion of deterministic optimization can be formulated as:Where y denotes the quality performance;y = Eyis the expectation or mean value of quality characteristic; = ( y y)is the standard deviation of y, which denotes variance of quality performance; = ( y y)is the absolute deviati
40、on of quality performance, which denotes sensitivity. The basic philosophy of robust design is to develop processes that consistently manufacture products which target with minimal variation of performance6. Robust design methods are widely used because they can not only improve the quality of produ
41、cts and processes but also minimize the variation of performance without eliminating the sources of variation【5】。.2.2.2 Six sigma methodologyIn the early 1980s, the methods of Genichi Taguchi became popular as a tool for quality improvement especially in the automotive industry. Taguchi provided a m
42、ethod focusing on robust design that reached fruition in the Six Sigma movement【6】.Six sigma starts with the target to deliver products and services which seem no defect form the eyes of consumers【7】. The Six Sigma method origins from statistical concept of standard deviation and the sigma symbol ()
43、typically used to denote standard deviation. A strict mathematical interpretation of defect counts would result in a six sigma criteria of not more than 2 parts per billion defective. However, the Six Sigma process assumes a distribution which can shift off center as much as +/-1.5, and therefore th
44、e defective part rate traditionally associated with Six Sigma is actually 3.4 parts per million. In addition to the mathematical measurement, the Six Sigma process also encompasses a corporate philosophy involving aspects of management, finances, customer interaction, and process predictability, whi
45、ch contribute toward the goal of zero defects【8】. In a six sigma robust design method, the objective function, containing both mean value f and standard f deviation, should be minimized as follows.Minimize:Where u and are weighting factors. In addition, following inequalities should be satisfied as
46、constraints on sigma level.Subject to:Here, n denotes the sigma level and LSL/USL denote the lower/upper specification limits, respectively.3. Machine Product Simulation3.1 Hydraulic press modelThe focused hydraulic press is frame type of 1250 ton to which the wedge preload method is applied. Becaus
47、e of the advantages of convenient loading and more reasonable pressing, the wedge preload method is better than the one of bolt preload. It is the main body component which is its body that endures all deforming force when the machine is operating. The body mainly consists of left and right columns,
48、 upper beam, slide block, bolster plate, moving bolster and hydraulic cylinder. The structure diagram is shown in Fig.2.3.2 Pre-Process of finite element analysisMaterial properties are as follows, Q235: density = 7.86E3, elastic modulus = 206Gpa, yield strength = 235MPa,ultimate strength = 425MPa,
49、Poisson ratio = 0.29. It is considered that the movement of the slide block is synchronous with the hydraulic cylinder and the fixed point of the slide block is identical with the junction point of the slide block and the hydraulic cylinder, fixed constraints, which restrain whole six degrees of fre
50、edom, are applied to the 3 surfaces connecting the slide block and the hydraulic cylinder in the analysis. Simplified model has been taken due to the large number of small features which has no significant effect on the analysis result. 1.42MPa pressure is loaded on the lower surface of slide block,
51、 and the 4 guiding face are set to connection of surface to surface which allows no movement but the direction tangent to the face. The cross-sectional view of the slide block is shown in Fig.3.3.3 Finite element analysis (FEA) and ISIGHT integrationThe slide block is a moving part and an important
52、stress component. When in full load condition, the maximum press of system is up to 25MPa. For fundamental research, the slide block is regarded as static state, therefore, static analysis is taken in this paper. The Von Mises stress result of slide block is obtained by the FEA software ABAQUS and t
53、he maximum stress, which is up to 338.2MPa, occurs at the junction of the slide block and hydraulic cylinder. As is shown in Fig.4, the stress of the slider centre is larger than other places. Therefore the central stiffener thickness should be optimized.The ABAQUS core is controlled to automaticall
54、y perform the pre-process and post-process, analyzing the compute result, as the secondary development, via programming Python language. Considering the slider model is simplified, we modeled directly in the ABAQUS with 7 variables:x1x7 . The plan of stiffener is shown in Fig.5 and we derive multi-o
55、bjective functions as follows:Minimize: Subject to:Here maximises is the max Von Mises stress in the structure and V is the overall width. In this paper, the multi-objective optimization software ISIGHT platform is integrated with ABAQUS. In order to obtain response result,the hydraulic press slider
56、 model file is transferred into ISIGHT and then delivered to ABAQUS solver to operate finite element analysis. The NCGA algorithm provided by ISIGHT software has genetic manipulation on the design variables and objectives according to the set of cycle number, the flow chart is shown in Fig.6.4. Resu
57、lts Comparison on RobustnessIn NCGA deterministic optimization algorithm, population size is 5, number of generations is 10, crossover type is 1,crossover rate is 0.6, mutation rate is 0.006 and number of iterative steps is 150. The maxmises and minimize of V in iteration process are shown in Fig.8 (a) and (b) respectively.In Table 1, it is shown that the max stress decreased 30.54% and the width (weight) decreased 11.64%. Therefore, we can conclude that multi-objective optimization results reach the goal of reduce weight and decrease stress.However, when a single
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于5G技术的智能物流系统开发合同(2024版)3篇
- 2024年度非专利技术与信息交换合同(2024版)3篇
- 2024版广告传媒合作协议3篇
- 2024年创业投资股份合作协议范本一
- 2024年度购物中心品牌代理经营合同
- 二零二四年度影视作品拍摄制作合同2篇
- 2024年度建筑项目工程审计与决算合同2篇
- 2024年小学营养餐供应承包协议样本版B版
- 2024年山皮石买卖标准合同版
- 2024年大数据中心共建共享合同
- 人教版小学四年级数学上册半期考试卷
- 最全公路资料目录整理
- 常用消防图例
- 现浇混凝土U型槽渠道施工技术方案
- 10KV台箱变试验方案
- 土地复垦整理工程质量保证措施
- 麓山国际社区最详细版个案(中)
- 班组长绩效考核表
- 校园管制刀具排查记录表(共1页)
- 07.双支节匹配 阻抗变换器
- 沥青软化点试验(环球法)
评论
0/150
提交评论