第七章 金属-半导体接触_第1页
第七章 金属-半导体接触_第2页
第七章 金属-半导体接触_第3页
第七章 金属-半导体接触_第4页
第七章 金属-半导体接触_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第七章第七章 金属和半导体的接触金属和半导体的接触 1 1、金属半导体接触及其能级图、金属半导体接触及其能级图 (1 1)金属和半导体的功函数)金属和半导体的功函数 在绝对零度时,金属中的电子填满了在绝对零度时,金属中的电子填满了E EF F以下所有能以下所有能 级,而高于级,而高于E EF F的能级则全空的能级则全空, , 在一定温度下,只有在一定温度下,只有E EF F附附 近的少数电子受热激发,由低于近的少数电子受热激发,由低于E EF F的能级跃迁到高于的能级跃迁到高于 E EF F的能级上,但绝大部分电子仍不能脱离金属而逸出的能级上,但绝大部分电子仍不能脱离金属而逸出 体外。体外。

2、这说明金属中的电子虽然能在金属中自由运动,但绝这说明金属中的电子虽然能在金属中自由运动,但绝 大多数所处的能级都低于体外能级大多数所处的能级都低于体外能级, ,要使电子从金属中要使电子从金属中 逸出,必须由外界给它足够能量。所以,逸出,必须由外界给它足够能量。所以,金属内部电金属内部电 子子是是在势阱中运动在势阱中运动。 金属的功函数金属的功函数WWm m 金属的功函数表示一个起始能量等于费米能级金属的功函数表示一个起始能量等于费米能级 的电子,由金属内部逸出到表面外的真空中所的电子,由金属内部逸出到表面外的真空中所 需要的最小能量。需要的最小能量。 E0 (EF)m Wm 0 () mFm

3、WEE E E0 0为真空中电子的能量,又称为真空能级。为真空中电子的能量,又称为真空能级。 半导体的功函数半导体的功函数Ws E0与费米能级之差称为半导体的功函数。与费米能级之差称为半导体的功函数。 0 () sFs WEE Ec (EF)s Ev E0 Ws 表示从表示从Ec到到E0的能量间隔:的能量间隔: 0c EE 称称为电子的亲和能,它表示要使半导体导带底的为电子的亲和能,它表示要使半导体导带底的 电子逸出体外所需要的最小能量。电子逸出体外所需要的最小能量。 En Ep scFn s WEEE 式中:式中: () n cFs EEE n n型半导体:型半导体: Ec (EF)s Ev

4、 E0 Ws En Ep p p型半导体:型半导体: () pFsv EEE () soFsgp WEEEE Ec (EF)s Ev E0 Ws En Ep scFn s WEEE () soFsgp WEEEE n n型半导体:型半导体: p p型半导体:型半导体: 设想有一块金属和一块设想有一块金属和一块n n型半导体,并假定型半导体,并假定 金属的功函数大于半导体的功函数,即:金属的功函数大于半导体的功函数,即: ms WW (2 2)接触电势差)接触电势差 接触前:接触前: FF sm EE FFms sm EEWW E Ec c (E(EF F) )s s E Ev v E0 WWs

5、 s E En n WWm m (E(EF F) )m m Vs为表面势为表面势 半导体中的电子半导体中的电子 金属金属 + 接触后:接触后: 半导体一边的势垒高度为:半导体一边的势垒高度为: 金属一边的势垒高度为:金属一边的势垒高度为: mnDnsn msnm qqVEqVE WWEW E En n E Ec c E Ev v (E(EF F) )s s qVqVD D qqns ns ns smD WWqV WWm m 金属与金属与n n型半导体接触型半导体接触 接触电势差接触电势差V Vs s= =Ws-Wm W Wm mWWs s形成表面势垒形成表面势垒 势垒区电子浓度比体内小得多势垒

6、区电子浓度比体内小得多 高阻区高阻区( (阻挡阻挡 层层) )。 界面处的势垒通常称为肖特基势垒。界面处的势垒通常称为肖特基势垒。 若若WWm mWWWs s,能带向,能带向 上弯曲,形成上弯曲,形成P P型反阻挡层。型反阻挡层。 金属与金属与p p型半导体接触时,若型半导体接触时,若WWm mWWWs s阻挡层阻挡层反阻挡层反阻挡层 WWm mWWs s反阻挡层反阻挡层阻挡层阻挡层 上述金半接触模型即为上述金半接触模型即为Schottky Schottky 模型:模型: (3 3)表面态对接触势垒的影响表面态对接触势垒的影响 这说明:这说明: 金属功函数对势垒高度影响不大金属功函数对势垒高度

7、影响不大 不同金属,虽功函数相差很大,但与半不同金属,虽功函数相差很大,但与半 导体接触,形成势垒的高度相差很小导体接触,形成势垒的高度相差很小 原因:原因: 半导体表面存在半导体表面存在表面态表面态 从能带的角度进行解释 基本概念: n表面能级:在半导体表面处的禁带中存在着表表面能级:在半导体表面处的禁带中存在着表 面态,对应的能级成为表面能级。面态,对应的能级成为表面能级。 n施主型表面态:能级被电子占据时呈电中性,施主型表面态:能级被电子占据时呈电中性, 施放电子后呈正电性。施放电子后呈正电性。 n受主型表面态:能级空着时为电中性,施放电受主型表面态:能级空着时为电中性,施放电 子后呈负

8、电性。子后呈负电性。 表面态在半导体表面禁带中形成一定的分布表面态在半导体表面禁带中形成一定的分布 电子恰好填满电子恰好填满q0以以 下的所有表面态下的所有表面态 -表面呈电中性表面呈电中性 q0以下的表面态空以下的表面态空 着时着时 -表面带正电表面带正电 -施主型施主型 q0以上的表面态被以上的表面态被 电子填充时电子填充时 -表面带负电表面带负电 -受主型受主型 -+ 表面态密度很大时表面态密度很大时 表面积累很多负电荷表面积累很多负电荷 能带向上弯曲能带向上弯曲 表面处表面处EF很接近很接近q0 ngD EqEqV 0 sDn WqVE (1)流入金属的电子并不是来自于半导体体内,)流

9、入金属的电子并不是来自于半导体体内, 而是由受主表面态提供而是由受主表面态提供 (2) 半导体的表面态可屏蔽金属接触的作用,半导体的表面态可屏蔽金属接触的作用, 使半导体内的势垒高度和金属的功函数几乎无关。使半导体内的势垒高度和金属的功函数几乎无关。 (3)接触电势差全部降落在两个表面之间。)接触电势差全部降落在两个表面之间。 n实际上:实际上: n由于表面态密度的不同,接触电势差部分降落由于表面态密度的不同,接触电势差部分降落 在半导体表面以内,金属功函数会对表面势垒在半导体表面以内,金属功函数会对表面势垒 产生影响,但影响不大。产生影响,但影响不大。 n因此即使当因此即使当WmWs时,也可

10、能形成时,也可能形成n型阻挡层。型阻挡层。 n整流理论整流理论-阻挡层阻挡层 n平衡态阻挡层平衡态阻挡层无净电流无净电流 2 2、金属半导体接触整流理论、金属半导体接触整流理论 在金属和半导体之间在金属和半导体之间 加上外加电压加上外加电压? 从半导体进入从半导体进入 金属的电子流金属的电子流 从金属进入从金属进入 半导体的电子流半导体的电子流 以以n n型半导体为例:型半导体为例: 阻挡层为高阻区域阻挡层为高阻区域 外加电压主要降落在阻挡层外加电压主要降落在阻挡层 平衡态时:表面势平衡态时:表面势V VS S0 0V0 则势垒高度降低为则势垒高度降低为qVD, ,=-q(Vs+V) 外加一个

11、负电压外加一个负电压V0 Vxc, 则电子完全不能穿过势垒;则电子完全不能穿过势垒; 若若 xdxc, 则势垒对于电子完全透明,即势垒降低了则势垒对于电子完全透明,即势垒降低了. 金属一边的有效势垒高度为金属一边的有效势垒高度为 -qV(x), 若若xcxd cD r D ns cd r D nsc xVV Nq q xx Nq qxqV 2/1 0 3 0 2 2 )( 隧道效应引起的势垒降低为隧道效应引起的势垒降低为 cD r D xVV Nq 2/1 0 3 2 反向电压较高时,势垒的降低才明显反向电压较高时,势垒的降低才明显 肖特基势垒二极管肖特基势垒二极管 肖特基势垒二极管:肖特基势

12、垒二极管: 利用金属利用金属-半导体整流接触特性制成的二极管。半导体整流接触特性制成的二极管。 肖特基势垒二极管与肖特基势垒二极管与pn结二极管的区别:结二极管的区别: (1)多数载流子器件和少数载流子器件)多数载流子器件和少数载流子器件 (2)无电荷存贮效应和有电荷存贮效应)无电荷存贮效应和有电荷存贮效应 (3)高频特性好。)高频特性好。 (4)正向导通电压小。)正向导通电压小。 P 电子扩散区电子扩散区 结区结区 空穴扩散区空穴扩散区 N 3 少数载流子的注入与欧姆接触少数载流子的注入与欧姆接触 少数载流子的注入少数载流子的注入 n型阻挡层,体内电子浓度型阻挡层,体内电子浓度 为为n0。金

13、半接触截面电子。金半接触截面电子 浓度:浓度: 该浓度差该浓度差 引起电子由内部向接触面扩散。引起电子由内部向接触面扩散。 平衡时扩散和势垒电场引起的漂移抵消。平衡时扩散和势垒电场引起的漂移抵消。 正向偏压下,扩散占据优势,电子向表面流动,正向偏压下,扩散占据优势,电子向表面流动, 形成正向电流。形成正向电流。 Tk qV nn D 0 0 exp0 多子的情况多子的情况 空穴的浓度在表面最大空穴的浓度在表面最大 kT qV pp D exp)0( 0 n型半导体的势垒和型半导体的势垒和 阻挡层都是对电子而阻挡层都是对电子而 言,由于空穴所带电言,由于空穴所带电 荷与电子电荷符号相荷与电子电荷

14、符号相 反,反,电子的阻挡层就电子的阻挡层就 是空穴的积累层是空穴的积累层。 少子的情况少子的情况 该浓度差该浓度差 引起空穴由表面向体内扩散。引起空穴由表面向体内扩散。 平衡时扩散和势垒电场引起的漂移抵消。平衡时扩散和势垒电场引起的漂移抵消。 正向偏压下,扩散占据优势,空穴向体内流动,正向偏压下,扩散占据优势,空穴向体内流动, 也形成正向电流。也形成正向电流。 空穴电流的大小,首先决定于阻挡层中的空穴浓度。空穴电流的大小,首先决定于阻挡层中的空穴浓度。 只要势垒足够高,靠近接触面的空穴浓度就可以很高。只要势垒足够高,靠近接触面的空穴浓度就可以很高。 由以上讨论可知:部分正向电流是由少数载流子

15、空穴由以上讨论可知:部分正向电流是由少数载流子空穴 荷载的。荷载的。 Ec(0) Ev(0) Ec EF Ev n型反型层中的载流子浓度型反型层中的载流子浓度 D qV 如果在接触面附近,费米能级和价带顶的距离如果在接触面附近,费米能级和价带顶的距离 )()0( FCVF EEEE 则则 p(0) 值应和值应和 n0 值相近,值相近,n(0)也近似等于也近似等于p0 Ec(0) Ev(0) Ec EF Ev n型反型层中的载流子浓度型反型层中的载流子浓度 D qV 势垒中空穴和电子所处的情况几乎完全相同,只势垒中空穴和电子所处的情况几乎完全相同,只 是空穴的势垒顶在阻挡层的内边界。是空穴的势垒

16、顶在阻挡层的内边界。 在加正向电压时,空穴将流向半导体,但它们并在加正向电压时,空穴将流向半导体,但它们并 不能立即复合,必然要在阻挡层内界形成一定的积不能立即复合,必然要在阻挡层内界形成一定的积 累,然后再依靠扩散运动继续进入半导体内部。累,然后再依靠扩散运动继续进入半导体内部。 (EF)m Ec 积累 扩散 少数少数 载流载流 子的子的 积累积累 (EF)s 上图说明这种积累的效果显然是阻碍空穴的流动。上图说明这种积累的效果显然是阻碍空穴的流动。 因此,空穴对电流贡献的大小还决定于空穴进入因此,空穴对电流贡献的大小还决定于空穴进入 半导体内扩散的效率。半导体内扩散的效率。 在金属和在金属和

17、n型半导体的整流接触上加正电压时,型半导体的整流接触上加正电压时, 就有空穴从金属流向半导体。这种现象称为就有空穴从金属流向半导体。这种现象称为少数少数 载流子的注入载流子的注入。 空穴从金属注入半导体,实质上是半导体价空穴从金属注入半导体,实质上是半导体价 带顶部附近的电子流向金属,填充金属中带顶部附近的电子流向金属,填充金属中 (EF)m以下的空能级,而在价带顶附近产生空以下的空能级,而在价带顶附近产生空 穴。穴。 欧姆接触 定义:不产生明显的附加阻抗,不会使半导体定义:不产生明显的附加阻抗,不会使半导体 内部载流子浓度发生显著改变。内部载流子浓度发生显著改变。 技术路线设计:技术路线设计: 反阻挡层?反阻挡层? 隧道效应?隧道效应? 半导体在重掺杂时,和金属的接触可以形成半导体在重掺杂时,和金属的接触可以形成 接近理想的欧姆接触。接近理想的欧姆接触。 在半导体上制作一层重掺杂区后再与金属接在半导体上制作一层重掺杂区后再与金属接 触。触。 思考题: n施主浓度施主浓度ND=1017cm-3的的n型型Si,室温下功函数,室温下功函数 是多少?若不考虑表面态的影响,它分别和是多少?若不考虑表面态的影响,它分别和Al、 Au和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论