版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 2 一个物体可以看成是许多微小部分构成。 重力作用于物体的每个微小部分。 如图,每个微小物体的重力视为空间平行力系。整个物体 的重力是这个空间力系的合力。 物体无论如何放置,其合力作用线都通过物体上一个确 定点。这一点称为物体的重心。 平行力系合力为平行力系合力为: n i i PP 1 平行力系合力位置由合力矩定理 确定 x y z C i V i P C x C y i x i y i z C z i M O P 6-3 6-3 重心重心 一、重心坐标公式一、重心坐标公式 3 i n i ic xPPx 1 i n i ic yPPy 1 由合力矩定理得:由合力矩定理得: n i iy
2、y MM 1 )()(PP P xP x i n i i c 1 n i ixx MM 1 )()(PP P yP y n i ii c 1 x y z C i V i P C x C y i x i y i z C z i M O P 4 重心在物体中一个固定位置。可 以将物体连同坐标系绕旋转900 i n i ic zPPz 1 x y z C i V i P C x C y i x i y i z C z i M O P x y z C i V i P C x C y i x i yi z C z i M O P P zP z n i ii c 1 n i izz MM 1 )()(PP
3、 重心公式重心公式 P zP z P yP y P xP x n i ii c n i ii c n i ii c 111 5 重心公式:重心公式: P zP z P yP y P xP x n i ii c n i ii c n i ii c 111 当物体的单位体积重量为常数 PV ii 体积重心体积重心 V zV z V yV y V xV x n i ii c n i ii c n i ii c 111 连续体 V zdV z V ydV y V xdV x V c V c V c 6 薄板薄板 ii SV S zS z S yS y S xS x n i ii c n i ii c
4、n i ii c 111 连续体连续体 S zdS z V ydS y S xdS x S c S c S c 体积重心体积重心 V zV z V yV y V xV x n i ii c n i ii c n i ii c 111 x y z C i P C x C y i xi y i z C z i M O P 7 细长线段细长线段 l zl z l yl y l xl x n i ii c n i ii c n i ii c 111 连续体 l zdl z l ydl y l xdl x l c l c l c x y z C i P C x C y i xi y i z C z i
5、M O P S zS z S yS y S xS x n i ii c n i ii c n i ii c 111 薄板薄板 8 1 1、查表法、查表法 对于均质物体,或有对称轴,对称中心的物体的重心在相应对称轴 ,对称中心上。如圆锥,圆柱重心在其轴线上,球体重心在其几何中心 上。简单形体的重心可以由工程手册查出。也可以进行计算. x y z C z r rzC 8 3 C x y z C z hzC 4 1 h C x y C C y C x axC 5 3 byC 8 3 a b C h C y hyC 3 1 二、确定重心方法二、确定重心方法 9 2 2、组合法、组合法 将复杂形状物体分
6、割成几个形状简单的物体 , 用有限形式的重心坐标公式 10 例1 图示平面图形,求其形心。 解:分割成两部分: 40 10 10 30 x y 3001030 21 SS 25, 5 5,15 11 22 yx yx 12 1122 SS SxSx xc 10 300300 300530015 12 1122 SS SySy yc 15 300300 300253005 10 30 10 40 11 3 3、负面积法、负面积法 若在物体或薄板内切去一部分,此类物体重心,仍可应用分 割法相同的公式来求得,只是切去部分的面积或体积取负值。 12 例2:图示结构, cmRcmRcmR25,50,10
7、0 321 求重心。 R1 R2 R3 cm 33 )25100100( )50100( 3 2 22 2 1 2 2 1 33 解:0 c x 212 331122 SSS SySySy yc )( 2 1 2 1 ) 3 4 ( 2 1 3 4 2 1 2 3 2 2 2 1 2 2 2 1 2 1 RRR R R R R 形心位置查表 13 工程中的一些形状复杂和质量分布不均匀的物体,重 心是难以计算的,这时可用实验法确定重心。 1)悬挂法: 求一个物体的重心,由于悬挂点 给物体的力和物体受的重力满足 二力平衡条件,重心必在过悬挂 点的铅直线上。 可以画一经过重心的直线,更换 悬挂点。 C F G F G C 可以画另一经过重心的直线。 用这种方法,可以求出直线的交 点既为重心,如图所示。 4 4、实验法、实验法 14 2 2) 称重法称重法 实例说明,例如一个不均匀的木 料 A B a 1 F P b C A 2 F P a b C B 可以先将B点放在 地面,称A点,得 到F1 将A点放在地面,称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(市场营销)市场定位策略试题及答案
- 2026年烹饪工艺(中式烹饪技巧)试题及答案
- 2025年中职(会计电算化)会计电算化阶段测试试题及答案
- 2025年高职植物保护管理应用(应用技术)试题及答案
- 初中数学专题07 用勾股定理构造图形解决问题(解析版)
- 养老院老人心理咨询师管理制度
- 养老院投诉处理与改进制度
- 养老院入住老人法律法规宣传教育制度
- 公共交通广告发布管理制度
- 2026年儿童误服药物电动洗胃急救处理流程练习题及答案
- 【二下数学】计算每日一练60天(口算竖式脱式应用题)
- 北京市东城区2025-2026学年高三上学期期末考试地理 有答案
- 2025年健康体检中心服务流程手册
- 2026年黑龙江林业职业技术学院高职单招职业适应性测试备考题库有答案解析
- 贵金属产业2026年发展趋势与市场价格波动分析
- 现代环境监测技术
- 2026福建能源石化集团校招面笔试题及答案
- 华东理工大学2026年公开招聘工作人员46名备考题库及参考答案详解
- 云南师大附中2026届高三高考适应性月考卷(六)历史试卷(含答案及解析)
- 2025桐梓县国土空间规划城市年度体检报告成果稿
- ISO-26262功能安全培训
评论
0/150
提交评论