版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学必求其心得,业必贵于专精复习课(二)算法初步程序框图本考点是高考的必考内容,主要考查算法的三种基本结构,题型为选择题、填空题涉及题型有算法功能判断型、条件判断型以及输出结果型,属于中、低档题1算法框图中的程序框2算法的三种基本逻辑结构顺序结构:选择结构:循环结构:典例(1)执行如图所示的算法框图,若输入n的值为6,则输出s的值为()a105b16c15 d1(2)如图,若f(x)log3x,g(x)log2x,输入x0.25,则输出的h(x)()a0。25 b2log32clog23 d2(3)如果执行右边的程序框图,输入正整数n(n2)和实数a1,a2,an,输出a,b,则()aab为a1
2、,a2,an的和b。为a1,a2,,an的算术平均数ca和b分别是a1,a2,an中最大的数和最小的数da和b分别是a1,a2,an中最小的数和最大的数解析(1)执行过程为s111,i3;s133,i5;s3515,i76,跳出循环故输出s的值为15.(2)当x0.25时,f(x)log3(2,1),g(x)log22,f(x)g(x),h(x)g(x)2,故选d。(3)结合题中算法框图,当xa时,ax可知a应为a1,a2,an中最大的数,当xb时,bx可知b应为a1,a2,an中最小的数答案(1)c(2)d(3)c类题通法解答算法框图问题,首先要弄清算法框图结构,同时要注意计数变量和累加变量
3、,在处理循环结构的框图时,关键是理解并认清终止循环结构的条件及循环次数1执行如图所示的算法框图,输出的s的值为()a1b1c2 d0解析:选d程序运行第一次:t1,s0;运行第二次:t1,s1;运行第三次:t0,s1;运行第四次:t1,s0;10,循环结束,输出s0.2若如图所示的算法框图输出的s的值为126,则条件为()an5 bn6cn7 dn8解析:选b由题知,第一次循环后,s2,n2;第二次循环后,s6,n3;第三次循环后,s14,n4;第四次循环后,s30,n5;第五次循环后,s62,n6;第六次循环后,s126,n7,满足s126,循环结束所以条件为n6,故选b.3执行如图所示的算
4、法框图,输出的n为()a3 b4c5 d6解析:选ba1,n1时,条件成立,进入循环体;a,n2时,条件成立,进入循环体;a,n3时,条件成立,进入循环体;a,n4时,条件不成立,退出循环体,此时n的值为4.1下列给出的赋值语句中正确的是()a0mbxxcba3 dxy0解析:选b赋值语句不能计算,不能出现两个或两个以上的“”,且变量在“”左边,故选b.2如下图所示的算法框图输出的结果是()a1 b3c4 d5解析:选c由a1,知ba34,故输出结果为4.3执行如下图所示的算法框图,若输入2,则输出的结果为()a5 b1c3 d5解析:选c根据题意,该框图的含义是求分段函数的函数值当x2时,y
5、log2x;当x2时,yx21.若输入2,满足x2,得yx213,故选c.4如图所示的算法框图的功能是()a求a,b,c中的最大值 b求a,b,c中的最小值c将a,b,c由小到大排列 d将a,b,c由大到小排列解析:选a逐步分析框图中各图框的功能可知,此程序的功能为求a,b,c中的最大值故选a.5(陕西高考)如图所示,当输入x为2 006时,输出的y()a28 b10c4 d2解析:选b由题意,当x2时结束循环故y3(2)110。6(北京高考)执行如图所示算法框图,输出的k值为()a3 b4c5 d6解析:选bk0,a3,q;a,k1;a,k2;a,k3;a,k4,故k4。7下边算法框图的算法
6、思路源于我国古代数学名著九章算术中的“更相减损术”执行该算法框图,若输入的a,b分别为14,18,则输出的a_.解析:a14,b18.第一次循环:1418且1418,b18144;第二次循环:144且144,a14410;第三次循环:104且104,a1046;第四次循环:64且64,a642;第五次循环:24且24,b422;第六次循环:ab2,跳出循环,输出a2。答案:28下述算法语句的运行结果为_n1s0dossnnn1loop whiles10输出n1.解析:s12345时循环停止,此时输出5。答案:59执行如图所示的算法框图,若输入n的值为8,则输出s的值为_解析:第一次循环,s(1
7、2)2,i4,k2;第二次循环,s(24)4,i6,k3;第三次循环,s(46)8,i8,k4。此时退出循环,输出s的值为8。答案:810阅读如图所示的算法框图,运行相应的程序,输出的结果s_。解析:程序在运行过程中各变量的值如下:第一次循环:当n1时,得s1,a3;第二次循环:当n2时,得s4,a5;第三次循环:当n3时,得s9,a7,此时n3,不再循环,所以输出s9。答案:911定义n!123n,画求10!的值的算法框图解:12某商场实行优惠措施,若购物金额x在800元以上(包括800元),则打8折,若购物金额x在800元以下500元以上(包括500元),则打9折;否则不打折设计算法的算法
8、框图,要求输入购物金额x,能输出实际交款额解:本题的实质是求函数y的值算法框图如下: 复习课(三)概率古典概型此类问题主要考查古典概型的求法,题型既有选择题、填空题,也有解答题,且常与统计等问题综合考查1互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况(2)当事件a与b互斥时,p(ab)p(a)p(b),当事件a与b对立时,p(ab)p(a)p(b)1,即p(a)1p(b)(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼
9、此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式p(a)1p()求解2古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件a包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式p(a)求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏典例柜子里有3双不同的鞋,随机地取出 2只,试求下列事件的概率:(1)取出的鞋不成双;(2)取出的鞋都是左脚的;(3)取出的鞋都是同一只脚的;(4)取出的鞋一只是左脚的,一只是右脚的,但不成双解用a1,a2;b1,b2;c1,c2分别表示3双不同的鞋,其中下标为奇数表示左脚
10、,下标为偶数表示右脚,则从6只鞋中取2只所有的取法有:a1a2,a1b1,a1b2,a1c1,a1c2,a2b1,a2b2,a2c1,a2c2,b1b2,b1c1,b1c2,b2c1,b2c2,c1c2,共15种(1)取出的鞋不成双的所有取法有:a1b1,a1b2,a1c1,a1c2,a2b1,a2b2,a2c1,a2c2,b1c1,b1c2,b2c1,b2c2,共12种其概率为p1。(2)取出的鞋都是左脚的所有取法有:a1b1,b1c1,a1c1,共3种其概率为p2。(3)取出的鞋都是同一只脚的所有取法有:a1b1,b1c1,a1c1,a2b2,a2c2,b2c2,共6种其概率为p3。(4)
11、取出的鞋一只左脚的,一只右脚的但不成双的所有取法有:a1b2,a1c2,a2b1,a2c1,b1c2,b2c1,共6种其概率为p4.类题通法在古典概型中,计算概率的关键是准确找到基本事件的数目,这就需要我们能够熟练运用图表和树状图,把基本事件一一列出而有许多试验,它们的可能结果非常多,以至于我们不可能将所有结果全部列出,这时我们不妨找找其规律,算出基本事件的数目1如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()a。b.c。 d.解析:选c从1,2,3,4,5中任取3个不同的数共有如下10个不同
12、的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选c.2某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学a1,a2,a3,a4,a5,3名女同学b1,b2,b3.现从这5名男同学和3名女同学中各随机选1人,求a1
13、被选中且b1未被选中的概率解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为p。(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:a1,b1,a1,b2,a1,b3,a2,b1,a2,b2,a2,b3,a3,b1,a3,b2,a3,b3,a4,b1,a4,b2,a4,b3,a5,b1,a5,b2,a5,b3,共15个根据题意,这些基本事件的出现是等可能的事件“a1被选中且b1未被选中”所包含的基本事件有:a1,b2,a1,b3,共2个因
14、此a1被选中且b1未被选中的概率为p。几何概型此类问题多以选择题、填空题的形式考查几何概型、概率的求法,属于低档题1几何概型的基本特征:基本事件的无限性、每个事件发生的等可能性2几何概型的概率计算公式:p(a)。典例(1)在半径为1的圆上随机地取两点,连成一条弦,则其长超过圆内接等边三角形的边长的概率是多少?(2)在半径为1的圆内,过一条直径上任意一点作垂直于直径的弦,求弦长超过圆内接等边三角形的边长的概率(3)以半径为1的圆内任一点为中点作弦,求弦长超过圆内接等边三角形的边长的概率解(1)记事件a弦长超过圆内接等边三角形的边长,取圆内接等边bcd的顶点b为弦的一个端点,当另一点在劣弧cd上时
15、,be|bc,而劣弧cd的弧长是圆周长的,所以由几何概率公式得p(a)。(2)记事件a弦长超过圆内接等边三角形的边长,如图所示,不妨在过等边bcd的顶点b的直径be上任取一点作垂直于直径的弦,显然当弦为cd时就是边长,弦长大于cd|长的条件是圆心o到弦的距离小于of|,由几何概率公式得p(a)。即弦长超过圆内接等边三角形的边长的概率是。(3)记事件a弦长超过圆内接等边三角形的边长,如图所示,作等边三角形的内切圆,当以小圆上任一点为切点作弦时,弦长等于等边三角形的边长,所以弦长超过内接三角形边长时,当且仅当弦的中点在小圆内,小圆半径为,所以由几何概率公式得p(a)。即弦长超过圆内接等边三角形的边
16、长的概率是。类题通法三个题目都是在圆内任意作弦使得弦长超过圆内接等边三角形的边长,但三个题目中由于“等可能的含义不同,得到的概率不同因而在解决几何概率问题时,必须找准观察角度,明确随机选取的含义,判断好基本事件的等可能性1在区间0,2上随机地取一个数x,则事件“1log1”发生的概率为()a。 b。c. d.解析:选a不等式1log1可化为log2loglog,即x2,解得0x,故由几何概型的概率公式得p。2.如图,矩形abcd中,点a在x轴上,点b的坐标为(1,0),且点c与点d在函数f(x)的图象上。 若在矩形abcd内随机取一点,则此点取自阴影部分的概率等于()a. b.c. d.解析:
17、选b因为f(x)b点坐标为(1,0),所以c点坐标为(1,2),d点坐标为(2,2),a点坐标为(2,0),故矩形abcd的面积为236,阴影部分的面积为31,故p.3在区间0,1上随机取两个数x,y,记p1为事件“xy”的概率 ,p2为事件“|xy的概率,p3为事件“xy的概率,则()ap1p2p3 bp2p3p1cp3p1p2 dp3p2p1解析:选b满足条件的x,y构成的点(x,y)在正方形obca及其边界上事件“xy”对应的图形为图所示的阴影部分;事件“|xy|”对应的图形为图所示的阴影部分;事件“xy”对应的图形为图所示的阴影部分对三者的面积进行比较,可得p2p3p1.1一个口袋内装
18、有大小相同的红、蓝球各一个,若有放回地摸出一个球并记下颜色为一次试验,试验共进行三次,则至少摸到一次红球的概率是()a.b.c. d.解析:选b所有的基本事件为:(红,红,红),(红,红,蓝),(红,蓝,红),(蓝,红,红),(红,蓝,蓝),(蓝,红,蓝),(蓝,蓝,红),(蓝,蓝,蓝),共8个三次都是蓝球的基本事件只有1个,其概率是,根据对立事件的概率之间的关系,所求的概率为1。选b.2已知直线yxb,b2,3,则直线在y轴上的截距大于1的概率为()a. b。c. d。解析:选d直线在y轴上的截距大于1,则b(1,3,故所求概率p.3从含有a,b,c的集合中任取一个子集,所取的子集是含有两个
19、元素的集合的概率是()a. b。c。 d。解析:选d所有子集共8个;其中含有2个元素的为a,b,a,c,b,c4有4根木棍长度分别为2,5,7,10,从这4根木棍中任取3根,则所取的3根木棍首尾相接能构成一个三角形的概率为()a。 b.c. d。解析:选a从4根木棍中任取3根,基本事件有(2,5,7),(2,5,10),(2,7,10),(5,7,10),共4个,能构成三角形的只有(5,7,10)这一个基本事件,故所求概率p。5已知菱形abcd的边长为4,abc150,若在菱形内任取一点,则该点到菱形的四个顶点的距离都大于1的概率为()a。 b1c。 d1解析:选d分别以a,b,c,d为圆心,
20、1为半径作圆,圆与菱形abcd重合部分的面积为212212,而菱形abcd的面积为8,所以所求概率为1.6。一只受伤的丹顶鹤向如图所示(直角梯形)的区域上空飞来,其中ad km,dc2 km,bc1 km,丹顶鹤随机地落在该区域上任意一处,若落在扇形沼泽区域ade以外,丹顶鹤能生还,则该丹顶鹤生还的概率是()a. b1c1 d1解析:选b过点d作dfab于点f,在rtafd中,易知af1,a45.梯形abcd的面积s1(221)1,扇形ade的面积s2()2,故丹顶鹤生还的概率p1.7从两名男生和两名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排
21、一名女生的概率为_解析:设两名女生为a1,a2,两名男生为b1,b2,则所有可能的结果如下:(a1,a2),(a1,b1),(a1,b2),(a2,a1),(a2,b1),(a2,b2),(b1,b2),(b1,a1),(b1,a2),(b2,b1),(b2,a1),(b2,a2),共12种,其中星期六安排一名男生、星期日安排一名女生包括4种情况,所以所求概率为p.答案:8已知集合m1,2,3,4,n(a,b)am,bm,a是集合n中任意一点,o为坐标原点,则直线oa与抛物线yx21有交点的概率是_解析:易知过点(0,0)与抛物线yx21相切的直线为y2x(斜率小于0的无需考虑),集合n中共有
22、16个元素,其中使oa斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型的概率计算公式知概率为p.答案:9任意抛掷两颗骰子,得到的点数分别为a,b,则点p(a,b)落在区域|x|y|3中的概率为_解析:基本事件为6636,p(a,b)落在区域x|y3中的有(1,1),(1,2),(2,1),所以p.答案:10某电脑公司现有a,b,c三种型号的甲品牌电脑和d,e两种型号的乙品牌电脑,希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么a型号电脑被选中的概率是多少?(直接写出结果即可)
23、解:(1)画出树状图如图:则选购方案为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e)(2)a型号电脑被选中的情形为(a,d),(a,e),即基本事件为2种,所以a型号电脑被选中的概率为p.11已知甲袋中有1只白球、2只红球,乙袋中有2只白球、2只红球,现从两袋中各取一球(1)求两球颜色相同的概率;(2)求至少有一只白球的概率解:将甲袋中1只白球记为a1,2只红球记为b1,b2;乙袋中2只白球记为a2,a3,2只红球记为b3,b4,所以“从两袋中各取一球”所包含的基本事件为(a1,a2),(a1,a3),(a1,b3),(a1,b4),(b1,a2),(b1,a3),(
24、b1,b3),(b1,b4),(b2,a2),(b2,a3),(b2,b3),(b2,b4),共有12种(1)设a表示“从两袋中各取一球,两球颜色相同”,所以事件a包含基本事件(a1,a2),(a1,a3),(b1,b3),(b1,b4),(b2,b3),(b2,b4),共6种所以p(a).(2)设b表示“从两袋中各取一球,至少有一只白球”,所以事件b包含基本事件(a1,a2),(a1,a3),(a1,b3),(a1,b4),(b1,a2),(b1,a3),(b2,a2),(b2,a3),共8种,所以p(b).12有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次根
25、据年龄将大众评委分为五组,各组的人数如下:组别abcde人数5010015015050(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从b组抽取了6人,请将其余各组抽取的人数填入下表:组别abcde人数5010015015050抽取人数6(2)在(1)中,若a,b两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选 1人,求这2人都支持1号歌手的概率解:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽到的人数如下表:组别abcde人数5010015015050抽取人数36993(2)记从a组抽到的3个评委为a1,a2,a3,其中a1,a
26、2支持1号歌手;从b组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手从a1,a2,a3和b1,b2,b3,b4,b5,b6中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2共4种,故所求概率p。(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1某校有学生4 500人,其中高三学生有1 500人为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个300人的样本,则样本中高三学生的人数为()a
27、50人b100人c150人 d20人解析:选b因为该抽样是分层抽样,所以应在高三学生中抽取1 500100(人)2阅读如图所示的算法框图,运行相应的程序,若输入x的值为1,则输出y的值为()a2 b7c8 d128解析:选c由算法框图知,y输入x的值为1,比2小,执行的程序要实现的功能为918,故输出y的值为8.3阅读下面的算法框图,运行相应的程序,则输出i的值为()a2 b3c4 d5解析:选cs10,i0,ii11,ssi1019,不满足s1;ii12,ssi927,不满足s1;ii13,ssi734,不满足s1;ii14,ssi440,满足s1,输出i4.4已知5件产品中有2件次品,其余
28、为合格品,现从这5件产品中任取2件,恰有一件次品的概率为()a0。4 b0.6c0.8 d1解析:选b记3件合格品为a1,a2,a3,2件次品为b1,b2,则任取2件构成的基本事件空间为(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),共10个元素记“恰有1件次品”为事件a,则a(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共6个元素故其概率为p(a)0。6。5.如图,正方形abcd的边长为2,ebc为正三角形若向正方形abcd内随机投
29、掷一个质点,则它落在ebc内的概率为()a。 b。c. d。解析:选b正方形的面积为4,sebc2,所以,质点落在ebc内的概率为。6某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:20,40),40,60),60,80),80,100若低于60分的人数是15,则该班的学生人数是()a45 b50c55 d60解析:选b成绩在20,40)和40,60)的频率分别是0.1,0.2,则低于60分的频率是0.3。设该班学生总人数为m,则0。3,m50。7一个盒子中装有标号为1,2,3,4,5的5张标签,有放回地随机选取两张标签,两张标签上的数字之和为奇数的概率是()a. b.
30、c。 d。解析:选c基本事件的总数为25个,其中两张标签上的数字之和为奇数的情况有:(1,2),(2,1),(1,4),(4,1),(2,3),(3,2),(2,5),(5,2),(3,4),(4,3),(4,5),(5,4),共12个,所以所求概率为p。8.甲、乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别为x甲,x乙,则下列叙述正确的是()ax甲x乙;乙比甲成绩稳定bx甲x乙;甲比乙成绩稳定cx甲x乙;乙比甲成绩稳定dx甲x乙;甲比乙成绩稳定解析:选c由题意可知,x甲(7277788692)81,x乙(7888889190)87.故x甲x乙又由方差公式可得
31、s(8172)2(8177)2(8178)2(8186)2(8192)250。4,s(8778)2(8788)2(8788)2(8791)2(8790)221.6,因为ss,故乙的成绩波动较小,乙的成绩比甲稳定9阅读下列程序:输入x;ifx0thenyx3elseifx0thenyx5elsey0end ifend if输出y。如果输入x2,则输出结果y为()a3 b3c5 d5解析:选b输入x2,则x20成立,则y(2)33,则输出3。10某农科院在22的4块试验田中选出2块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为()a. b.c. d.解析:选d如图给4块试验田分别
32、标号为a1,a2,b1,b2.a1a2b1b2基本事件为:(a1,a2),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(b1,b2)共6个基本事件,其中“每行每列都有一块试验田种植水稻的基本事件有:(a1,b2),(a2,b1),共2个p(a)。11在面积为s的abc内部任取一点p,则pbc的面积大于的概率为()a. b。c。 d。解析:选d设ab,ac上分别有点d,e满足adab且aeac,则adeabc,debc且debc。点a到de的距离等于点a到bc的距离的,de到bc的距离等于abc高的.当动点p在ade内时,p到bc的距离大于de到bc的距离,当p在ade内部运
33、动时,pbc的面积大于,所求概率为2.12在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()a甲地:总体平均值为3,中位数为4b乙地:总体平均值为1,总体方差大于0c丙地:中位数为2,众数为3d丁地:总体平均值为2,总体方差为3解析:选d根据信息可知,连续10天内,每天的新增疑似病例不能有超过7,选项a中,中位数为4,可能存在大于7的数;同理,在选项c中也有可能;选项b中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项d中,根
34、据方差公式,如果有大于7的数存在,那么方差不会为3。二、填空题(本大题共4小题,每小题5分,共20分请把正确答案填在题中的横线上)13。为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间调查了某地10 000位居民,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000位居民中再用分层抽样抽出100位居民做进一步调查,则在2。5,3。0)(小时)时间段内应抽出的人数是_解析:抽出的100位居民中平均每天看电视的时间在2。5,3。0)(小时)时间内的频率为0.50.50。25,所以这10 000位居民中平
35、均每天看电视的时间在2.5,3。0)(小时)时间内的人数是10 0000。252 500,抽样比是,则在2。5,3)(小时)时间段内应抽出的人数是2 50025。答案:2514已知变量x,y的回归方程为ybxa,若b0.51,61。75,38.14,则回归方程为_解析:因为a38。140。5161。756。647 5,所以回归方程为y0。51x6.647 5。答案:y0。51x6.647 515袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球从中一次随机摸出2只球,则这2只球颜色不同的概率为_解析:从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求
36、概率为。答案:16设点(p,q)在|p3,q3中按均匀分布出现,则方程x22pxq210的两根都是实数的概率为_解析:已知点(p,q)组成了边长为6的正方形,s正方形6236.由方程x22pxq210的两根都是实数得(2p)24(q21)0,即p2q21。所以当点(p,q)落在“正方形内且单位圆外”的阴影区域时,方程的两根都是正数由图可知,阴影部分面积ds正方形s圆36.所以原方程两根都是实数的概率为1。答案:1三、解答题(本大题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤)17(本小题满分10分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期123
37、45678910天气晴雨阴阴阴雨阴晴晴晴日期11121314151617181920天气阴晴晴晴晴晴阴雨阴阴日期21222324252627282930天气晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为。(2)称相邻的两个日期为“互邻日期对(如,1日与2日,2日与3日等)这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率
38、为.以频率估计概率,运动会期间不下雨的概率为。18(本小题满分12分)(广东高考)某城市100户居民的月平均用电量(单位:度),以160,180),180,200),200,220),220,240),240,260),260,280),280,300分组的频率分布直方图如图所示(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240),240,260),260,280),280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240)的用户中应抽取多少户?解:(1)由(0.0020.009 50.0110。012 5x0。0
39、050.002 5)201得x0。007 5,直方图中x的值为0.007 5。(2)月平均用电量的众数是230。(0.0020.009 50。011)200。450.5,月平均用电量的中位数在220,240)内,设中位数为a,则0。450.012 5(a220)0。5,解得a224,即中位数为224。(3)月平均用电量在220,240)的用户有0。012 52010025(户),同理可求月平均用电量为240,260),260,280),280,300)的用户分别有15户、10户、5户,故抽取比例为,从月平均用电量在220,240)的用户中应抽取255(户)19(本小题满分12分)全网传播的融合
40、指数是衡量电视媒体在中国网民中影响力的综合指标根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组频数14,5)225,6)836,7)747,83(1)现从融合指数在4,5)和7,8内的“省级卫视新闻台中随机抽取2家进行调研,求至少有1家的融合指数在7,8内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数解:(1)融合指数在7,8内的“省级卫视新闻台记为a1,a2,a3;融合指数在4,5)内的“省级卫视新闻台”记为b1,b2。从融合指数在4,5)和7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:a1,a2,a1,a3,a2,a3,a1,b1,a1,b2,a2,b1,a2,b2,a3,b1,a3,b2,b1,b2,共10个其中,没有1家的融合指数在7,8内的基本事件是:b1,b2,共1个所以所求的概率p1.(2)这20家“省级卫视新闻台”的融合指数平均数等于455.56.57。56。05。20(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示。(1)计算甲班的样本方差;(2)现从乙班这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 秋季国家教育政策落实计划
- 职业安全与保安服务的结合计划
- 2025年中考数学考点分类专题归纳之分式方程
- 钻井工程设计格式培训
- 把握青春节拍
- 安全培训的重要性与实施策略
- 园林花卉 课件 第九章 技能训练
- 工厂装修期间应急响应预案
- 2022小学语言文字工作总结
- 2024全新音标教学课件
- 高中数学奥赛辅导:第四讲不定方程
- 02 明渠均匀流断面尺寸设计
- 第八讲 matlab simulink基础.
- 创伤急救周围血管损伤
- 通力电梯KCE电气系统学习指南
- 电子商务师_4级_理论知识题库-判断题-全部判断题
- 苗木材料报审及进场清单
- 肾移植术的解剖(1)
- 《政务礼仪》PPT课件.ppt
- 2022年初中一年级生物上册期中试卷及答案
- 《羊道春牧场》读后感作文5篇
评论
0/150
提交评论