版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第8章 相量法讲授 板书1、了解复数的概念及表达形式。 2、掌握向量的三要素掌握向量的三要素 掌握向量的三要素1. 组织教学 5分钟3. 讲授新课 70分钟2. 复习旧课 5分钟 一阶电路4. 巩固新课 5分钟5. 布置作业 5分钟一、 学时:2二、 班级:06电气工程(本)/06数控技术(本)三、 教学内容:讲授新课:8.1 复数相量法是建立在用复数来表示正弦量的基础上的,因此,必须掌握复数的四种表示形式及运算规则。1. 复数的四种表示形式代数形式 a = a +jb 复数的实部和虚部分别表示为: rea=a ima=b 。图 8.1 为复数在复平面的表示。图 8.1根据图 8.1 得复数
2、的三角形式: 两种表示法的关系: 或 根据欧拉公式可将复数的三角形式转换为指数表示形式: 指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表示形式及相互转换关系,这对复数的运算非常重要。2. 复数的运算(1) 加减运算 采用代数形式比较方便。若 则 即复数的加、减运算满足实部和实部相加减,虚部和虚部相加减。复数的加、减运算也可以在复平面上按平行四边形法用向量的相加和相减求得,如图8.2所示。图 8.2(2) 乘除运算 采用指数形式或极坐标形式比较方便。若 则 即复数的乘法运算满足模相乘,辐角相加。除法运算满足模相除,辐角相减,如图8.3示。 图 8.3 图 8.4(3) 旋转因子:由复
3、数的乘除运算得任意复数 a 乘或除复数 , 相当于 a 逆时针或顺时针旋转一个角度,而模不变,如图 8.4 所示。故把 称为旋转因子。当 当 故 +j, j, -1 都可以看成旋转因子。3. 复数运算定理定理1 式中 k 为实常数。定理2 定理3 若则 例8-1 计算 复数 解: 本题说明进行复数的加减运算时应先把极坐标形式转为代数形式。例8-2 计算 复数 解: 本题说明进行复数的乘除运算时应先把代数形式转为极坐标形式。 8.2 正弦量1.正弦量电路中按正弦规律变化的电压或电流统称为正弦量,以电流为例,其瞬时值表达式为(本书采用 cosine 函数): 波形如图 8.5 所示。图 8.5注意
4、:激励和响应均为正弦量的电路称为正弦电路或交流电路。研究正弦电路的意义:(1)正弦电路在电力系统和电子技术领域占有十分重要的地位。由于: 1)正弦函数是周期函数,其加、减、求导、积分运算后仍是同频率的正弦函数; 2)正弦信号容易产生、传送和使用。(2)正弦信号是一种基本信号,任何复杂的周期信号可以分解为按正弦规律变化的分量。因此对正弦电路的分析研究具有重要的理论价值和实际意义。2. 正弦量的三要素(1)im 幅值(振幅、最大值):反映正弦量变化过程中所能达到的最大幅度。(2) 角频率:为相位变化的速度,反映正弦量变化快慢。它与周期和频率的关系为: rad/s (3)y 初相角:反映正弦量的计时
5、起点,常用角度表示。需要注意的是: 1)计时起点不同,初相位不同,图 8.6给出了同一个正弦量在不同计时起点下初相位的取值。 2)一般规定初相位取主值范围,即 |y| 。3)如果余弦波的正最大值发生在计时起点之后,如图8.7所示,则初相位为负,如果余弦波的正最大值发生在计时起点之前,则初相位为正。4)对任一正弦量,初相可以任意指定,但同一电路中许多相关的正弦量只能对于同一计时起点来确定各自的相位。 图 8.6图 8.73. 相位差相位差是用来描述电路中两个同频正弦量之间相位关系的量。设 则相位差为: 上式表明同频正弦量之间的相位差等于初相之差,通常相位差取主值范围,即:| 如果上式中 0 ,称
6、 u 超前 i ,或 i 滞 u ,表明 u 比 i 先达到最大值;如图 8.8(a)所示。如 0 , 称 i 超前 u ,或 u 滞后 i , 表明 i 比 u 先达到最大值。如 = p , 称 i 与 u 反相,如图 8.8(b)所示;如 =0 , 称 i 与 u 同相,如图 8.8(c)所示。 图 8.8 (a)(b)(c)需要注意的是:两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。4. 正弦电流、电压的有效值周期性电流、电压的瞬时值随时间而变,为了衡量其平均效应,工程上采用有效值来表示。周期电流、电压有效值的物理意义如图 8.9 所示,通过比较直流电流 i 和
7、交流电流 i 在相同时间 t 内流经同一电阻 r 产生的热效应,即令: 从中获得周期电流和与之相等的直流电流 i 之间的关系: 这个直流量 i 称为周期量的有效值。有效值也称方均根值。 图 8.9同样,可定义电压有效值: 设正弦电流 相应的有效值为: 因为 所以 即 正弦电流的有效值与最大值满足关系: 同理,可得正弦电压有效值与最大值的关系: 若一交流电压有效值为 u = 220v ,则其最大值为um311v ;需要注意的是:(1)工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等。但绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。(2)测量
8、中,交流测量仪表指示的电压、电流读数一般为有效值。(3)区分电压、电流的瞬时值 i、u ,最大值 imm 、 um 和有效值 i、u 的符号。 例8-3 已知正弦电流波形如图所示, 103rad/s , (1)写出正弦 i(t) 表达式; (2)求正弦电流最大值发生的时间 t1 例 8 3 图解: 根据图示可知电流的最大值为 100a , t=0 时电流为 50a ,因此有: 解得 由于最大值发生在计时起点右侧故取 所以 当 时电流取得最大值,即: 例8-4 计算下列两正弦量的相位差。 解:(1) 转为主值范围: 说明 i1 滞后 i2 。 (2) 先把 i2 变为余弦函数: 则 说明 i1 超前 i2。 (3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品安全保障措施方案
- 防雷设计方案
- 微生物实验室管理规章制度
- 2023年嘉兴平湖市卫生健康系统招聘在编卫生专业技术人员考试真题
- 2023年临沧市永德县医共体总医院招聘笔试真题
- 2023年佛山市南海区教育系统毕业生招聘教师笔试真题
- 板框压滤机技术协议书
- 人员绩效分配方案
- 深基坑应急预案
- 第三章 溶液的基本性质课件
- 脊髓亚急性联合变性新版培训课件
- 2023年江苏省国信集团有限公司招聘笔试题库及答案解析
- YS/T 1022-2015偏钒酸铵
- 马工程《刑法学(下册)》教学课件 第19章 破坏社会主义市场经济秩序罪
- GB/T 1740-2007漆膜耐湿热测定法
- 校园突发事件及危机应对
- 《必修上第六单元》教案【高中语文必修上册】
- 医疗器械辐照灭菌分析课件
- 信托与租赁讲稿课件
- 2023年广东恒健投资控股有限公司校园招聘笔试模拟试题及答案解析
- 高效的时间管理高效的时间管理课件
评论
0/150
提交评论