版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 36 3 2010 3 $ k acta automatica sinicavol. 36, no. 3march, 2010% 1 2 3 1 %$ff%fi, :%,q %. %ka$: 1) f%k%; 2) %$%, f%; 3) $, fiaf% (qr%$ 2), %fi$, $%. $i% ibm fi$fi%f%$. fi, , , doi10.3724/sp.j.1004.2010.00375a greedy searching algorithm for multiple objecttracking and occlusion handlingyang tao1li j
2、ing2pan quan3zhang yan-ning1abstract this paper presents a novel real-time multiple object tracking algorithm, which contains three parts: regioncorrelation based foreground segmentation, merging-splitting based data association and greedy searching based occluded object localization. the main chara
3、cteristics of the proposed algorithm are summarized as follows: 1) the multiple object tracking and occlusion handling problem is successfully changed into an image classification problem with prior knowledge of object number and feature; 2) a highly efficient greedy searching method is presented to
4、 meet real-time capability; 3) it has good performance in expansibility, and it has no constraints about the number of occluded objects, the occlusion ratio and the objectt s motion model. experiment results with hand labeled ibm database demonstrate that the method is effective and efficient.key wo
5、rds multiple object detection and tracking, occlusion handling, greedy searching, intelligent video surveillance%k%fififl$%fi, y,$a,$%f. f%fi116 %$% aa$. r$, $%, $afi $%.%pf 5 : 1) fi; 2) fiq; 3) qfi; 4) fi; 5) fi. $, 1) 5) %, 2) qr %, fa% ( 3) % ( 4) %a.k, f%lfffflfl. $q:, q %; $% , %a%.1) q %, qr%
6、, %, qfl%qf%. l, q r%q$%, %qr%, $. mckenna 13 bremond14 k, ,. piater 15 k$ 2008-10-22 fi$ 2009-01-21manuscript received october 22, 2008; accepted january 21,2009$q (863 ) (2009aa01z315), (60903126, 60872145, 60634030), i$ (708085) supported by national high technology research and de-velopment prog
7、ram of china (863 program) (2009aa01z315), national natural science foundation of china (60903126,60872145, 60634030), and cultivation fund of the key scien- tific and technical innovation project, ministry of education of china (708085)1. ffli!$fa fp710129 2. fp$i fp 710071 3. ffli!$k fp 7101291. s
8、haanxi key laboratory of speech and image informationprocessing, school of computer science, northwestern polytech- nical university, xir an 710129 2. school of telecommunica- tions engineering, xidian university, xir an 710071 3. school of automation, northwestern polytechnical university, xir an71
9、0129, q kalman %, .q %fl%, $q , fl%,%. q%, q%k%. %a%qr%$ 2, %:fi, %$, fl%k%$ %f%, f.2) %$%k. qr %$, flfi ($ 2) $%. %a%.%,mean shift . $% (a,ka,) $ (fi ,%l), % %. , %, $%,%$, %f. %, $l, %fikfi, qrfl%, %$, f%, $%, . flk, %, %f%.a%$%,$%, %$k. l,qr%, $%fia, f$fiqr%, %fi, %fl %. fl, $%$fifik. elgammal 16
10、 %fi$% %, %$% % (fi,$,), %$ fi$%$, %, q. cucchiara10 :$fi$% $. beleznai 11 mean shift fi%$, q% mean shift . %, lffl: cucchiara 10 fik, fk%. flk,fi%, fi%, %f%. beleznai 11 $% l, f, f% mean shift %$.$lfl, %$%fi. q , fi%, %$a%, f%k%, q%, $%. qr%,% %fi$, f%$.$%pf: 1 ;$% ; 2 ;$%q ; 3 ;%; 4 ;$; 5 ;%.1 k 3
11、 : 1) %;2) q; 3) %. 1 . pfifi,%$, fifi:, :%k%k %, %q. $qr%, , q; $qr%, fi%q, % , $%. 1 %fifig. 1 greedy searching based multiple object tracking and occlusion handling algorithm3 : %fi3772 q2.1 % (background subtraction)1722%f%, $ %p%$%, ,%,fi, flfi$%f. %$%. p%$, ,%17 ,%,a f tt %a d %$%a c f :v+n u+
12、n1.d(u, v) =f tt (x, y)(2n + 1)2y=vn x=un.1,q d(u, v) tc0,f =(3)$, tc = 0.1. $fi% %k, a%k%ka%, %$. i b $p$, a (u, v) % (2m +1)(2m +1)kfi%fif:n c c (u, v) =$18 .f%$, ,%,kh%$f.$ % (gaussian mixture model, gmm)17 %, q$% $r. gmm f:$fiafi% x $, %f k $:m.m.(b(u + u, v + v)i (u + u, v + v)v=m u=m.m.m.b(u +
13、 u, v + v)2 ,v=m u=m.m.m.k.i (u + u, v + v)2(4)p (xt ) = . i,t xt , i,t , .,(1)v=m u=mi=1i,t%, fi (4) $%. $, $k% f%, %$.2.2q ti , i = 1, , n1 $%,fi$ i,t i $ t %, %$.k.i=1 i,t = 1, (xt , i,t , i,t ) % x t %i $.1(xt , i,t , .) =i,tn.i,t1(2) 2 | 2 d , j = 1, , n $j2%. t d %, $ 23 $%$%q. fl%fl: m c .1)
14、m t d $%fi%, $%, k,%. %fi%, %kq$%$, fl, k:fl%, r m .t 1 2 (xt i,t ) . (xt i,t )i,t1e(2)fi$ i = 1, , k , n $ xt %, f%, p r, g, b a, q$%, $ .i,t = i i . $ gmm $2$%$, $fifi%$%$, %k. flk, f% xt , %, %fi%k, fi%.fifik fl, fi$%, %$: %, , f; $%, :%fifi%qr%k, :$, l. fll, $ gmm %l, , a%$. fia (u, v), (2n + 1)
15、 (2n + 1) sti djm (i, j) = c(5)sti + sdj$, sti dj$ ti dj %:, sti sdj $ ti dj %k, fi c %kp, %$ c = 2, m (i, j) 0, 1. fl, %$ f%$fl, fl$%.2) c m , %$, t d % c . % c %$yfi 0, c f:a) m , ti , $%fi jmax , q c % 1:fiq%, % z , g% p (zg |h ) $k. 2 $f%, $ h fi$ w ti i=1, ,w%q, zg fi$ ti i=1, ,w q$%$, %k%q%$.
16、h r a%, zg % rw , %jmax = arg max m (i, j),j = 1, , n1j, fi% z flgc (i, jmax ) = c (i, jmax ) + 1(6)%.b) fi m , %dj , $% jmax , q c % 1:jmax = arg max m (i, j),i = 1, , n2ic (imax , j) = c (imax , j) + 1(7)c) c , 2 %yfi, yfi%, q m$%fi$yfi 0, a) fl%; c $yfi 2, $n.y c %, t d % 3 : 1) %;2) $%; 3) $%fi%
17、. $%, % ,%,% q; $fi%, % $,%. fl, $%$%qr, fiqf.q %6, 23 q %fi, fl %k,%,%, fla%. %, q, f $%, qr%$ 2 %, %, .3 %yfq %, $;%$%, $%k%, q% . f%, %, flkk%. l;%q, fiq. fl%, k%fi%. 2 $%fifig. 2 multiple objects location in a merged foreground% z g , $%: % vi i=1, ,w , %. vi $, $%. ti $%vi =(8) t ifi%g , %$fi%f
18、ifi:z z 1 = arg max vi ,i 1, , wi2 = arg max v ,i 1, , w, v / v z ii1i(9).z = arg max vi ,i 1, , w,kivi / v j j=1, ,k1% vi 1, % p (zi |h )fi$, %, vi , fl% p (zi |h ) %. l, ti$qr$%fl%k%, ti % p (zi |h ) % vi $fl, fl, $%, q%$, f%$%fi:p (z 1 |h ) = max p (zi |h )p (z |h, z ) = max p (z |h, z )21i13 : %
19、fi379fi$, p (i (x)|ti ) fi i (x) ti %$%.fi (16) %, % %, %$% fi. %. %fi (16) %$y.p (z |h, z , , z ) =k1k1max p (z |h, z , , z )(10)i1k1fi$ i 1, , w, zi / z j=1, ,k1 . j$a, ti % tj , fi (10) fi$, q%fi:% z 1 , , zk1 %, fl%, $fi%,ffiq$k%.f, h $%fifl:p (z |h ) p (z |h, z , , z ) = p (z |h )1w1w1g(11)fi (
20、10) fi (11) $, % p (zg |h )$k%. %h $% z 1 , , zk1 f%fi xg+$k% z , %, $%fi x g , qfi (16) $:g p (i (x)| ti )p (ti ) % z %$%:1,x x wg . p (i (x)|t )p (t )1 = arg max p (zi |h ),i = 1, , w(12)z s sis=kp (ti |i (x) =fi z , $k% p (i (x)| ti )p (ti ) (x), x1fi z :x +wgk .p (i (x)|ts )p (ts )s=kk = arg max
21、 p (zi |h, z1 , z2 , , zk1 )(13)z i(17)$, i = 1, , w, zi / z j=1, ,k1 . f (x) 0, 1, %f%fi, %fifi%. 3 $. $q r%, fi%q h , q%, qr%,. %, $%, fi (14),(15) (17) ti %, q%$, %fifij% p (zi |h, z , , z ) , ti1k1%k zi h l$%, q%. $%:p (zi |h, z , , z ) = max(p (zi |fxc ), xc h1k1(14)$a xc %k zi ffxc%. % p (zi |
22、fxc ) fi$f ti fxc %. , f%, $ fxc $fi% p (zi |fxc ):+ xg $, q$%fi. l, fi$%.4q$, vc+ flqf%fi$fi. $fi intel core2 cpu 1.66 ghz , 2 g. ibm fi$fi24 %fi, q 25 $%.4.1%, f 3 :1) %fi ;1.xk fxcp (zi |fxc ) = zwp (ti |i (x)(15) zhfi$, i (x) fi$ xk %fifi%, zw zh$ zi %. fi i (x) ti % p (ti |i (x) $, p (ti |i (x)
23、 %. qr%$%, fk% p (ti |i (x), fi, h $% p (ti |i (x): p (i (x)| ti )p (ti ) p (ti |i (x) =(16)w. p (i (x)|ts )p (ts )s=k 3 fig. 3 flowchart of greedy searching algorithmfp2) k%;3) %.fi$i, , fl$k% fi, %, q pets2006 $ 25 % 9 % , %f:false positive rate (fpr) =(18)fp + tn$, tp, tn, fp, fn $ true positive,
24、 truenegative, false positive, false negative $%, tg (total ground truth) %$%, tf (total frame) %. k%, $,%. f %, $%: (occlusion error rate, oer), qr%fl:tptgtracker detection rate (trdr) =fpfalse ala rate (far) =fptp% =(19)detection rate (dr) =qr%tp + fntn4.2%, kp%$fi, % hr$%. fl, $fi%fi. % fl fi pet
25、s,ibm % fi24 , % caviar fi26 , % etiseo27 . ibm fi$fispecificity =fp + tntp + tnaccuracy =tftppositive prediction (pp) =tp + fptnnegative prediction (np) =fn + tnfnfalse negative rate (fnr) =fn + tp3 : %fi381$, fl, $fi%.ibm %, fl, 10 ibm % ,$i, r% (ground truth). %, , k $, q%, %fi$. $if 10 7 443 , $
26、 3 085 , qr 64 . 4 $ 10 $i%.$, l. 6 (c) 6 (d) $, fi% gmm %$ $%: ( 6 (c) 6 (d) $), flk, kfi%h$ ( 6 (c) 6 (d) $). 6 (e) 6 (f ) $%, a%, fi, $%$. 4 ibm fi$ 10 $i%fig. 4 hand labeled ground truth trajectory of ibmindoor surveillance video database%, fi$% , fl, q fl%, % tp,tn,fp,fn, %fi (18) (19) $. 5 f%
27、( 1 : p; 2 : gmm ; 3 : $)fig. 5 moving foreground segmentation results under similar background (the first row shows the input video, the second row displays the gmm results, and the third row displays our results)4.3%$ ibm fi, fl 2.1 ;, q %fl. fi%fi%, 9 9 %d, 0.9. ibm fi%$, p 320 240 %fifi, % 15 /.
28、%k. 5 $f%. k, gmm f$ fia ( 5 2 ), $ %$, fl%. $a%, y,k$, $%f%, % ( 5 3 ). 6 $%$ %. $%, k,f$. %, :%fifi%qrfl%k, %fi:(b) (b) background image(a) p(a) input image(d) gmm (d) gmm foreground image(c) gmm (c) gmm segmentation result(f ) $(f ) our foreground image(e) $(e) our segmentation result 6fig. 6,f%m
29、oving foreground segmentation results under cast shadow and similar background4.4$, ,mean shift %qr.$%, %$% 1 , fi (17)$qfi%, q 2 %$%. %$, fl$fi$fl% ( 7 (c) $ 3 fi), f%ya%$%, % ( 7 (c) $ 4 fi). 7 $ 3 fl$%. fl%, q %6, 23 . $, , $k (7 (a) (c) $ 2 fi 3 fi). 7 (c) $, 2%fl ( 7 (c) $ 3 fi), kqr$%, fl% 7 f
30、l$experiment results of two people tracking through occlusionfig. 7 8 $experiment results of three-people tracking through occlusionfig. 83 : %fi383 8 $ 3 $f%. $ 1 $p, 2 $ %. %fi, $ %qra, $%$fi$% 3 % ( 8 $ #180, #222). 3 %q%, $%, q %qr. $ , $k$ 3 % ( 8 $ #180, #222), q 3 $ ( 8 $ #204, #240). 25 fi (
31、18) $% . 9 $ ibm fi$% 10 , 7 443 % . fi, $f%: (false negative rate, fnr) 0.027 (9), $%f%. %, %fi, f% ; %, n $ m (m n ) %, f%$ . fi% (false positive rate, fpr) 0.077, , ibm fi$ fl, 10 fifi$qr64 , $f 50 , 0.22. flk, , $%, fi% fi 10 /.%, %, $%. $, $i% ibm fi$fi , f%$. %$,$%f, fi% %, %p, % f%.references
32、1 senior a, hampapur a, tian y l, brown l, pankanti s, bolle r. appearance models for occlusion handling. image and vision computing, 2006, 24(11): 123312432 cucchiara r, grana c, tardini g, vezzani r. probabilistic people tracking for occlusion handling. in: proceedings of the 17th international co
33、nference on pattern recognition. cambridge, uk: ieee, 2004. 1321353 nguyen h t, smeulders a w m. fast occluded object track- ing by a robust appearance filter. ieee transactions on pattern analysis and machine intelligence, 2004, 26(8):109911044 wu y, yu t, hua g. tracking appearances with occlu- sions. in: proceedings of ieee computer vision and pat- tern recognition. wisconsin, usa: ieee, 20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 35259-2017 纺织品 色牢度试验 试样颜色随照明体变化的仪器评定方法(CMCCON02)》专题研究报告
- 《GB-T 35484.3-2021土方机械和移动式道路施工机械 工地数据交换 第3部分:远程信息处理数据》专题研究报告
- 《GB-T 24117-2009针织物 疵点的描述 术语》专题研究报告
- 《储能材料与器件分析测试技术》课件-表面积测试实训
- 2026年淮南联合大学单招职业适应性考试题库参考答案详解
- 《幼儿文学》课件-8.4幼儿戏剧改编
- 运输公司调度岗实习合同
- 钟表行业钟表品牌营销专员岗位招聘考试试卷及答案
- 2025城管协管员笔试题及答案
- 2025年气浮电主轴项目建议书
- 数学六年级上册-第八单元检测卷(一)
- 主动脉瓣置换、升主动脉置换术护理查房
- NT855康明斯发动机大修统计记录文本数据
- 短暂性脑缺血发作诊疗指南诊疗规范
- 五子棋社团活动方案及五子棋社团活动教案
- 义务教育(新课标)初中物理实验目录
- 个人独资企业公司章程(商贸公司)
- GA/T 1073-2013生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法
- A建筑公司发展战略研究,mba战略管理论文
- 中国汽车工业协会-软件定义汽车:产业生态创新白皮书v1.0-103正式版
- 情报学-全套课件(上)
评论
0/150
提交评论