我国城镇居民人均消费的SPSS统计分析_第1页
我国城镇居民人均消费的SPSS统计分析_第2页
我国城镇居民人均消费的SPSS统计分析_第3页
我国城镇居民人均消费的SPSS统计分析_第4页
我国城镇居民人均消费的SPSS统计分析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2013年我国城镇居民人均消费的SPSS统计分析1、 搜集到的2013年我国31个城市城镇居民人均消费水平的数据数据来源:国家统计局2、 对数据的基本分析在数据文件建立好后,通常还需要对待分析的数据进行必要的预加工处理,这是数据分析过程中不可缺少的一个关键环节.(1) 、对数据按人均消费(expend)进行降序排列操作步骤:(1):选择“数据”“排序个案”菜单项 (2):将“人均消费(expend)”选入“排序依据”列表框,选中“降序”请预览后下载! (3):点击“确认”按钮,生成如下降序排列的数据集由数据的降序排列可以看出,全国只有上海、北京、广东等九个城市的城镇人均消费在全国城镇人均消费水

2、平以上.(2) 、作出人均收入和人均消费的直方图操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项 (2):从“库”中选择“直方图”将其拉入“图表预览使用数据实例” (3):将变量“地区”设置为x轴,将“人均收入”和“人均消费”设置为y轴请预览后下载! (4):点击“确认”按钮,即生成如下直方图通过一个复合条形图,可以很明确的发现我国城镇居民生活水平存在很大的地区差异,地区发展很不平衡,从图中的生活消费支出和人均收入来看,北京,上海,浙江这些省市城镇居民消费水平最高,人均收入也是最高的,各省市的城镇居民消费水平差异较大,大多数省份城镇居民人均消费集中在15000元左右.(3) 、对数据

3、按照人均消费作出直方图,以统计我国农村人均消费的水平1、 首先对数据分组,分组数目的确定.按照Sturges提出的经验公式来确定组数K,K=1+,计算得组数为6.2、确定组距组距=(最大值-最小值)/组数=(28155.00-12231.90)/6=2653.85,可近似取值为3000.00元.操作步骤:(1):选择“转换”“可视离散化”菜单项,将“人均消费”选入“要离散的变量”列表框中,单击“继续”按钮进入主对话框. (2):单击“生成分割点”按钮,设定分割点数量为6,宽度为3000.00,可见系统会自动会填充第一个分割点的位置为12231.90,单击“应用”返回到主对话框. (3):此时可

4、以看到下部数值标签网格里的“值”列已被自动填充,单击“生成标签”按钮,是标签列也得到自动填充. (4):将离散的变量名设定为expendNew.请预览后下载! (5):单击“确定”按钮.3、 频数分析操作步骤:(1):选择“分析”“描述统计”“频率”,打开频率对话框. (2):选定“expendNew”,点击“图表”,选择“条形图”点击继续. (3):点击“确认”,生成如下三张表.Statistics人均消费(已离散化)NValid32Missing0请预览后下载!Statistics人均消费(已离散化)NValid32Missing0Mean3.13Median3.00Std. Deviat

5、ion1.314Minimum1Maximum7Percentiles252.00503.00人均消费(已离散化)FrequencyPercentValid PercentCumulative PercentValid= 12231.9013.13.13.112231.91 - 15231.901031.331.334.415231.91 - 18231.901340.640.675.018231.91 - 21231.9039.49.484.421231.91 - 24231.9039.49.493.824231.91 - 27231.9013.13.196.927231.91+13.13.

6、1100.0Mean3.13Median3.00Std. Deviation1.314Minimum1Maximum7Percentiles252.00503.00753.75人均消费(已离散化)FrequencyPercentValid PercentCumulative PercentValid= 12231.9013.13.13.112231.91 - 15231.901031.331.334.415231.91 - 18231.901340.640.675.018231.91 - 21231.9039.49.484.421231.91 - 24231.9039.49.493.82423

7、1.91 - 27231.9013.13.196.927231.91+13.13.1100.0Total32100.0100.0请预览后下载!由上图的频数分析可以看出,我国2013年城镇居民人均消费支出集中在第二组和第三组,大约占到百分之七十.由于在表格中不存在缺失值,因此频数分布表中的百分比和有效百分比相同.从此次分析中可以看出,我国城镇家庭居民人均消费的总体水平比较集中, 大约在12000元-18000元之间,还有少数省市的消费水平处在中等阶段,而有上海、北京、浙江等一些经济较发达的地区的城镇家庭居民人均消费达到了21000元以上.3、 对数据的回归分析(1) 、作出人均收入与消费支出散点

8、图,以观察他们的线性关系如何操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项 (2):从“库”中选择“散点图”将其拖入“图表预览使用数据实例” (3):将“人均收入”选定为x轴,将“人均消费”选定为y轴请预览后下载! (4):点击“确认”生成如下散点图由散点图可以看出,人均消费Y和人均收入X大概呈一元线性关系,因此可以建立一元线性模型进行回归分析.请预览后下载!(2) 假设回归模型为Y=a+b X,其中,Y表示城镇人均消费支出,为被解释变量,X表示人均收入,为解释变量,b为回归系数.操作步骤:(1)选择“分析”“回归”“线性”菜单项,打开“线性回归”对话框. (2)将“人均消费”选入

9、“因变量”列表框,将“人均收入”选入“自变量”列表框. (3)单击“确定”按钮.得到如下(1)、(2)、(3)、(4)四张表格,依次分析如下:表(1):移入/移出的变量Variables Entered/RemovedbModelVariables EnteredVariables RemovedMethod1人均收入a.Entera. All requested variables entered.b. Dependent Variable: 人均消费从上表可以看出,放入模型的变量只有一个即“人均收入”,选择变量的方法为强行进入法,也就是说将所有的自变量都放入模型中,模型的因变量为请预览后下

10、载!“人均消费”.表(2):模型汇总Model SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.960a.922.9201106.90715a. Predictors: (Constant), 人均收入上表是对模型的简单汇总,其实就是对回归方程拟合情况的描述,通过这张表可以知道相关系数R=0.960,决定系数=0.922,调整决定系数=0.920,和回归系数的标准误=31106.90715.由于决定系数接近于1,说明模型的拟合程度较好.表(3):方差分析表ANOVAbModelSum of SquaresdfM

11、ean SquareFSig.1Regression4.353E814.353E8355.256.000aResidual36757303.474301225243.449Total4.720E831a. Predictors: (Constant), 人均收入b. Dependent Variable: 人均消费F=355.256,P=0.0000.05,所以不能拒绝原假设,可以认为人均消费水平在18000元.同时,可知全国城镇居民2013年人均消费在95的置信水平下的置信区间为:(15809.7242,18623.4821)请预览后下载!.5、 非参数检验多配比样本分参数检验数据中我国城镇

12、家庭居民人均消费包括食品、衣着、居住、家庭设备、交通及通讯、文教娱乐、医疗保健、和其他8个指标,为了比较清楚的了解这8项指标对我国城镇居民人均消费总体的影响,以及其大概的消费动向,可以利用多配比样本的非参数检验Friedman 检验对各个指标进行检验.(1) :操作步骤:(1) 选择“分析”“非参数检验”“旧对话框”“k个相关样本”菜单项,打开如下对话框:(2) :单击“确定”按钮,得到如下两张表格:表(1):RanksMean Rank食物消费8.00衣物消费5.09居住消费4.50家居设备2.66交通通讯6.38医疗保健2.34文教娱乐5.88其它1.16表(2):Test Statist

13、icsaN32Chi-Square198.604df7Asymp. Sig.000请预览后下载!Test StatisticsaN32Chi-Square198.604df7Asymp. Sig.000a. Friedman Test(2) 、结果分析检验结果中的p值小于给定水平0.05,故拒绝原假设,认为八个指标对我国城镇居民人均消费的影响是有显著差异的.由表(1)知食物消费对人均消费的影响最大,其次是交通通讯和衣物消费,而影响最小的是其它.6、 因子分析在研究我国城镇居民的消费情况时收集了食物、衣物、居住等八个影响居民消费情况的因素,以期对问题能够有比较全面、完整的把握和认识.由于数据过多

14、,在实际建模时,这些变量未必能真正发挥预期的作用,会给统计分析带来许多问题,可以表现在:计算量的问题和变量间的相关性问题.为了解决这些问题,最简单和最直接的解决方案是削减变量个数,但这又必然会导致信息丢失和信息不完整等问题的产生.为此,人们希望探索一种更有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失.因子分析正是解决这种问题的方法.(1) 操作步骤(1) 、选择菜单“分析”“降维”“因子分析”,出现因子分析对话框;(2) 、把参与因子分析的样本选到变量对话框中,如下图:(3) 单击“确定”按钮,得到如下11张图:图(1)原有变量的相关系数矩阵:Correla

15、tion Matrix请预览后下载!Correlation Matrix食物消费衣物消费居住消费家居设备医疗保健交通通讯文教娱乐其它Correlation食物消费1.000.288.656.744.295.787.782.732衣物消费.2881.000.337.517.694.368.374.634居住消费.656.3371.000.676.505.849.750.771家居设备.744.517.6761.000.441.830.853.767医疗保健.295.694.505.4411.000.479.414.600交通通讯.787.368.849.830.4791.000.860.782文

16、教娱乐.782.374.750.853.414.8601.000.831食物消费衣物消费居住消费家居设备医疗保健交通通讯文教娱乐其它Correlation食物消费1.000.288.656.744.295.787.782.732衣物消费.2881.000.337.517.694.368.374.634居住消费.656.3371.000.676.505.849.750.771家居设备.744.517.6761.000.441.830.853.767医疗保健.295.694.505.4411.000.479.414.600交通通讯.787.368.849.830.4791.000.860.782文

17、教娱乐.782.374.750.853.414.8601.000.831其它.732.634.771.767.600.782.8311.000从上图可以看到,大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析.图(2)巴特利特球度检验和KMO检验KMO and Bartletts TestKaiser-Meyer-Olkin Measure of Sampling Adequacy.833Bartletts Test of SphericityApprox. Chi-Square233.009df28Sig.000由上图知,巴特利特球度检验统计量的观测值为2

18、33.009,相应的概率p为0.如果给出的显著性水平为0.05,由于概率p小于显著性水平,应拒绝零假设,认为相关系数矩阵与单位阵有显著地差异.同时,KMO值为0.833,根据Kaiser给出了KMO度量标准可知原有变量适合进行因子分析.图(3)因子分析的初始解CommunalitiesInitialExtraction食物消费1.000.798衣物消费1.000.862居住消费1.000.750家居设备1.000.812医疗保健1.000.821交通通讯1.000.897文教娱乐1.000.885其它1.000.872Extraction Method: Principal Component

19、 Analysis.请预览后下载!由上图第二列可知,所有变量的共同度均较高,各个变量的信息丢失较少.因此,本次因子提取的总体效果较理想.图(4)因子解释原有变量总方差的情况:Total Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsRotation Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %Total% of VarianceCumulative %15.

20、50468.79468.7945.50468.79468.7944.52456.54556.54521.19214.89883.6921.19214.89883.6922.17227.14783.6923.4735.91089.6024.2583.22292.8245.2372.96195.7856.1782.22798.0127.0911.13699.1478.068.853100.000Extraction Method: Principal Component Analysis.上图第一组数据项描述了初始因子解的情况.可以看到,第一个因子解的特征根值为5.504,解释原有八个变量总方差的

21、68.794,累计方差贡献率为68.794.其余数据含义类似.在初始解中由于提取了八个因子,因此原有变量的总方差均被解释掉.第二组数据项描述了因子解的情况.可以看到,由于指定提取两个因子,两个因子共解释了原有变量总方差的83.692.总体上,原有变量的信息丢失较少,因子分析效果较理想.第三组数据项描述了最终因子解的情况.可见,因子旋转后,累计方差比没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使得因子更容易解释.图(5)因子的碎石图:请预览后下载!上图横坐标为因子数目,纵坐标为特征根.可以看到,第一个因子的特征根值很高,对原有变量的

22、贡献最大;第3个以后的因子特征根都较小,对解释原有变量的贡献很小,已经成为可被忽略的“高山脚下的碎石”,因此提取两个因子是合适的.图(6)因子载荷矩阵:Component MatrixaComponent12其它.929.097交通通讯.921-.222文教娱乐.909-.241家居设备.895-.103居住消费.854-.143食物消费.822-.350衣物消费.599.710医疗保健.635.646a. 2 components extracted.请预览后下载!上图因子载荷矩阵是因子分析的核心内容.根据该表可以写出本案例的因子分析模型:其它=0.929+0.097 交通通讯=0.921-

23、0.222文教娱乐=0.909-0.241 家居设备=0.895-0.103居住消费=0.854-0.143 食物消费=0.822-0.350衣物消费=0.599+0.710 医疗保健=0.635+0.646由上表知,八个变量在第一个因子上的载荷都很高,意味着他们与第一个因子的相关度高,第一个因子很重要.图(7)旋转后的因子载荷矩阵:Rotated Component MatrixaComponent12交通通讯.915.244文教娱乐.914.222食物消费.889.084家居设备.836.336居住消费.819.281其它.770.528衣物消费.188.909医疗保健.250.871a.

24、 Rotation converged in 3 iterations.由上图知,交通通讯、文教娱乐、食物消费、家居设备、居住消费、其它在第一个因子上有较高的载荷,第一个因子主要解释了这几个变量;衣物消费、医疗保健在第二个因子上的载荷较高,第二个因子主要解释了这几个变量.图(8)因子旋转中的正交矩阵Component Transformation MatrixComponent121.879.4772-.477.879图(9)因子协方差矩阵:Component Score Covariance MatrixComponent1211.000.0002.0001.000请预览后下载!Compon

25、ent Score Covariance MatrixComponent1211.000.0002.0001.000从上表可以看出,两因子没有线性相关性,实现了因子分析的设计目标.图(10)旋转后的因子载荷图:由上图可以直观的看出,衣物消费和食物消费比较靠近两个因子坐标轴,表明如果分别用第一个因子刻画食物消费,用第二个因子刻画衣物消费,信息丢失较少,效果较好.图(11)因子得分系数矩阵:Component Score Coefficient MatrixComponent12食物消费.271-.187衣物消费-.188.576居住消费.194-.032家居设备.184.001医疗保健-.157.532交通通讯.236-.084文教娱乐.241-.09

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论