机械能守恒定律的教学设计_第1页
机械能守恒定律的教学设计_第2页
机械能守恒定律的教学设计_第3页
机械能守恒定律的教学设计_第4页
机械能守恒定律的教学设计_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、机械能守恒定律的教学设计 教学目标 1掌握机械能守恒定律,知道它的含义和适用条件。2学会机械能守恒定律解决力学问题,知道应用这个定律的解题步骤,知道用这个定律处理问题的 优点。第一课时 教学目标 1知道动能和势能间可以相互转化。2能够推导动能与重力势能的转化守恒。3知道机械能守恒的条件,在具体的环境中能够判断机械能是否守恒。教学重点 在具体的环境中判断机械能守恒。教学过程 动能和势能统称为机械能,其中势能包括重力势能和弹性势能。1动能和势能之间可以相互转化。 (以实例的形式引入) 列举生活中常见的动能和势能之间相互转化的现象:教材 79 页。自由落体运动(直线运动) 。平抛运动(曲线运动) 。

2、单摆的摆动过程。物体在光滑斜面上自由下滑(斜面固定)物体由一个光滑曲面滚下,然后滚上另一个光滑曲面。光滑水平面放置的压缩弹簧将小球弹出。小球从高处下落,压缩竖直弹簧的过程。(6)(7)上面的例子中1 5说明了动能和势能之间是可以相互转化的;例子6说明动能和弹性势能之间是可以相互转化的;例子7说明动能、重力势能、与弹性势能三者之间是可以相互转化的。讨论与交流:动能和势能之间的转化是通过什么来实现的?回答:在上述的例子中,动能和势能之间的相互转化是通过重力或弹力做功实现的。过度:初中的时候就接触过机械能守恒定律, 现在我们就上面几个例子中最简单的自由落体运动来推 导机械能守恒定律。2 .机械能守恒

3、定律的推导一一以自由落体运动为例 如图所示,一个质量为m的小球自由下落,经过高度为hi的位 置1 (初位置)时速度为Vi,下落到高度为h的位置2 (末位置)时速度为V2。在自由落体运动中,物体只受重力G=mg的作用,重力做正功。V2hi设重力所做的功为Wg,它亦等于合力所做的功,由动能定理可 得:Wg Jmv2-lmvi22 2另一方面,由重力做功与重力势能关系知道,Ws =mgh=mgh2(2)由上面两式可得:1mv| -;1mv2 =mgh1 -mgh2可见,在这个运动过程中(从位置 1到位置2),重力做了多少功,就有多少功转化为等量的动能。即动能增加了多少,重力势能就减少了多少。表达式二

4、: 移项可得:12 12(表达式一)-mv2 +mgh2 = mv1 +mghi,即2 2 上式的左边两项分别表示小球在位置 2(末态)的动能和重力势能,相加在一起表示小球在位置2(末 态)的机械能;等号右边的两项分别表示小球在位置 1 (初态)的动能和重力势能,相加在一起表示 小球在位置1 (初态)的机械能。因此对于上式,我们可以理解为:末态的机械能与初态的机械能是相等的, 即机械能在小球的运动过 程中保持不变。那么,我们还可以推广到任意时刻或任意位置小球的动能和重力势能之和保持不变。至此,我们推导出了机械能守恒定律的两个表达式。实际上,我们还可以由其他的模型来证明。 试用上面提到的实例3推

5、导机械能守恒定律。解答:与上面用自由落体运动的推导过程完全相同。讨论与交流:教材80页,机械能守恒定律成立的条件是什么?3 .探讨机械能守恒的条件 在上面的推导过程中,我们用到了两个规律:一个是动能定理,一个是重力做功与重力势能之间的关系。两个规律结合在一起之所以能推导出机械能守恒定律,是因为在应用动能定理的时候有 叫=W。因此机械能守恒的条件是:= Ws即:如果重力的功等于合力的功,也可以理解为只有重力做功,机械能就是守恒的。我们用这个条件去考察上面的实例 1 5:只受重力,重力的功等于合力的功,机械能守恒;只受重力,重力的功等于合力的功,机械能守恒;受重力和绳拉力,但绳拉力不做功,只有重力

6、做功,因此有重力功等于合力功,机械能守恒;受重力和支持力,但支持力不做功,只有重力做功,因此有重力功等于合力功,机械能守恒;受重力和支持力,但支持力不做功,只有重力做功,因此有重力功等于合力功,机械能守恒;小结:只有重力做功,机械能守恒。我们还可以这样来理解重力的功:它只是使物体的动能与重力势 能之间发生了转化, 即只是使能量在机械能内部之间转化, 重力做功不改变机械能总量, 因而机械能 是守恒的。6)受重力、支持力和弹簧弹力,但只有弹力做功,因此有弹力功等于合力功,机械能守恒;7)受重力和弹簧弹力,弹簧弹力和重力做功,因此弹力和重力做的功等于合力功,机械能守恒; 同样的,弹力做功跟重力做功类

7、似, 弹簧弹力也只是使能量在机械能内部转化, 因而也不改变机械能 的总量。由教材的结论“只有重力做功,机械能守恒”可以得到相似的结论:只有弹力做功,机械能亦守恒。综合起来我们就可以说:只有重力或弹力做功,会发生动能、重力势能、弹性势能三者之间的转化, 而在转化过程中总量保持不变。讨论与交流,教材 80 页:“你对只有重力做功”是如何理解的? 1、只受重力或系统内弹簧弹力。2、除重力弹力外还受其他力,但其他力不做功。3、除重力弹力外的其他力做功,但其他力做功的代数和始终为0.满足上述三个条件中的任何一个,该系统的机械能都守恒。其中第三点需要进行一点补充说明, 比如用一水平力作用在物体上, 使其在

8、粗糙水平面上做匀速直线运动。 拉力和摩擦力都做了功, 一正 一负大小相等, 一次物体的机械能总量保持不变。 严格地讲, 第三个条件不属于机械能守恒的条件之 列,只是研究过程中机械能的数值始终保持不变而已。4 .机械能守恒定律的内容(这在只有重力、弹力做功的情形下,物体的动能和势能发生相互转化,但机械能的总量保持不变。里的弹力特指弹簧之类的弹力,而不包括支持力压力之类的弹力) 说明:只有重力或弹力做功,即不考虑空气阻力及因其他摩擦产生热而损失能量,所以机械能守恒也 是一种理想化的物理模型。5.教材课后练习 一方面使学生掌握住刚刚总结出来的判断机械能守恒的方法,另一方面探讨新的方法。学生活动 完成

9、课后第(2 )题 学生一般会按照机械能守恒的条件进行判断:只有重力、弹力做功 引导学生思考:是不是只有这一种方法可以判断机械能是否守恒呢?我们看下面的几个练习:(a)跳伞员带着张开的降落伞在空气中匀速下落。(b)拉着一个物体沿光滑的斜面匀速上升。(C)用细绳拴着一个小球,使小球在光滑水平面上做匀速圆周运动。对于上面的问题,我们可以这样思考: 在a中,物体的运能没有改变,因为匀速运动;另外,物体的重力势能逐渐减小,因为高度越来越小。因而机械能总量在减小。在b中,物体的动能不变,重力势能在增加,因而机械能在增加。在C中,物体的动能和重力势能都没有发生变化,因此机械能没有发生变化。上面我们所采用的方

10、法,实际上是直接去观察物体的机械能有没有发生改变, 而没有根据做功去判断。不妨我们将这种判断机械能守恒与否的方法称为“直接看”另外,我们也可以根据能量转化来判断: 自然界的总能量是守恒的, 只要没有机械能转化成其他形式 的能量,则机械能就是守恒的。这时我们往往通过一些现象去判断,比如看到了发光、发电、发热等 现象,这就意味着有机械能转化成了其他形式的能量。这时的机械能就是不守恒的了。比如:流星在 大气中运动的过程, 我们看到了发光的现象, 其实也在发热。 这说明流星的机械能在不断地转化成光 能和热能,因而其机械能是不守恒的。总的来说,判断机械能守恒与否有上面提到的三种方法:1)看是不是只有重力

11、、弹力做功; (此方法要求对物体进行受力分析和运动分析,进而确定力的做 功情况) 只有重力、弹力做功有下面的三种解释: 物体只受重力、弹力; 受其他力,但其他力不做功; 其他力做功,但所做功的代数和为零。2)“直接看”(看动能与势能的变化特点,再综合起来判断) ;(此方法要求对物体进行运动分析, 得出各种机械能的变化情况)3)看机械能的去向。即有没有去发光、发热、发电等。说明 在第一课时中, 主要是让学生理解机械能守恒定律, 以及如何判断机械能是否守恒。 但并没有提在给 定范围内机械能是否守恒。而这正是第二课时的内容。第二课时 教学目标 1知道重力势能属于物体和地球构成的系统。2知道弹性势能属

12、于构成弹簧的质点系统。3能判断一个具体的系统机械能是否守恒。4能处理单体机械能守恒的问题。教学重点 能判断一个具体的系统机械能是否守恒。教学过程 1重力势能属于物体和地球共有 重力势能属于物体和地球构成的系统所共有, 平时我们说一个物体的重力势能有多少, 只是习惯上的 说法,实际上指的还是物体和地球所共有的机械能。如何理解这句话呢?若把地球移走, 则物体不受重力作用, 更谈不上重力势能了。 重力势能是由物体 与地球之间的相互作用力才产生的,属于二者共有。2弹簧弹性势能属于构成弹簧的质点系统弹性势能与重力势能都与物体间的相对位置相关,因而又把势能称为位能。3给定范围内的机械能守恒 我们重新考虑上

13、节课中涉及到的一个问题被压缩的弹簧将小球弹开的过程,如图所示。这次我 们把着眼点放在小球上:在弹簧向右弹开小球的过程中,小球的动能增加,重力势能没有发生变化, 弹性势能又没有(小球可以看成质点,即其发生的形变可以忽略)因而它的机械能是逐渐增加的。我们再看弹簧: 我们所说的弹簧一般指轻弹簧, 因此它的动能和重力势能都是零。 在将小球向右弹出 时,弹簧的形变越来越小,因而弹性势能越来越小,机械能越来越小。可是,上节课明明我们知道,机械能是守恒的。怎么现在来看,机械能又成了不守恒的了?(学生马上会意识到,这是我们只看小球或弹簧的结果,即我们是对某一范围谈机械能守恒还是不守 恒的) 上节课我们提到的机

14、械能守恒,并没有是说在哪个范围内守恒。而这节课我们看到,如果划定范围,那么机械能有可能是不守恒的。在上面我们谈到的例子中:小球的机械能在增加,弹簧的机械能在减小,但机械能的总量是不变关键还要看我们所要研究的对象。的。要说机械能守恒还是不守恒, 例1:试判断下列情况下物体 A机械能的变化。(1) 在如图构成的系统中,所有摩擦都不计,已知 A物体的质量大于B物体的质量。由静止释放, 在运动中。(2)如图所示,开始时弹簧处于原长,A位于与悬点等高的位置,由静止释放,在 A摆至悬点的正F方的过程中。(1)(3)如图所示,在小球A由静止自由下落并压缩弹簧的过程中,小球 A的机械能如何变化。(2)B的位置

15、越来越高,且速度越来越大,表明析 (1 )中A、B构成的系统机械能守恒,在运动中,其机械能逐渐增大。从而可知 A的机械能逐渐减小。(2) 中A和弹簧构成的系统机械能守恒,在 A向下摆的过程中,弹簧的长度由原长逐渐变大,因而 弹性势能越来越大。故A的机械能逐渐减小。(3)中A在自由下落阶段只有重力做功,因而机械能守恒;在压缩弹簧阶段,A、B构成的系统机 械能守恒,但由于弹簧的弹性势能越来越大,从而 A的机械能越来越小。4 .单体的机械能守恒实例分析例1 :如图所示,一物体从高为h的光滑固定斜面上由静止滑下,试求物体滑至斜面底端时的速度。析在物体的运动过程中,受两个力的作用:重力和支持 力。其中支

16、持力对物体不做功,即过程中只有重力做功。满足机械能守恒的条件,由机械能守恒定律可得:mgh = mv2解得:2V = J2gh注此题亦可以用运动学公式结合牛顿运动定律来解,但明显不如用机械能守恒简洁(用动能定理 有同样简洁的表达式)。提醒学生:一旦把斜面改成曲面,用运动学公式结合牛顿运动定律的方法将 不能使用,但用机械能守恒定律将同样简洁。例2 :一物体从光滑斜面上由静止滑下,进入一个光滑圆形轨道,其半径为R,如图所示。已知物体恰好通过圆形轨道的最高点,试求小球开始滑下的位置相对于圆形轨道最低点的高度。mg =m一R由上面两式可得:例3 :拿一个内壁光滑的细管弯成一个四分之三圆的轨道,如图所示

17、,现将轨道竖直放置,其中A 口 切线竖直,B 口切线水平。现让一小球从 A 口正上方由静止释放,第一次使之通过 B 口后又恰好落 入A 口,第二次小球恰好到达 B 口。试求两次释放小球的位置相对 A 口的高度比。析 小球在整个运动过程中机械能守恒,第一次有:1mghi = mgR + 2小球从B 口出来后做平抛运动,恰好落入 A 口:R = vth-R41 2Rgt由上面各式可得: 第二次有:mgd = mgR得:h2 = R从而:hi _ 5h24学生思考如图所示,倾斜轨道与有缺口的圆轨道相切。圆轨道半径为 R,是轨道的最咼点,缺口oh=?AB所对的圆心角为90,把一 p两轨道在同一竖直平面

18、内, A个小球从斜轨道上某入由静止释放,它下滑到切点后R便进入圆轨道,要想使它上升到 A点后再落到B点,不计摩擦,则下列说法正确的是(D )A .释放点须与A点等咼RB. 释放点须比A点高一4C. 释放点须比A点高旦2D .使小球经A点后再落到B点是不可能的 注解决上面问题中小球通过最高点的问题时,弄清楚是线球模型还是杆球模型非常关键,因为两 种模型通过最高点的临界条件是不相同的。练习: 1.长为I的不可伸长的轻绳一端系一个质量为 m的小球,然后悬挂起来,如图所示。现将小球拉离平衡位置,使线与竖直方向的夹角为 日,然后由静止释放。问:(1)小球到最低点时的速度是多大;(2)小球到最低点时对绳子

19、的拉力为多大?2 .在第1题中,若将小球拉到与悬点等高的位置由静止释放,贝U小球运动到最低点时对绳子的拉力 是多少?这个结果与绳子的长短有关系吗?小球到最低点时的动能与绳子的长短有关吗?第三课时教学目标 1 .能够在多物体的问题中正确的选择机械能守恒的系统。2 .能够在多过程问题中正确的选择机械能守恒的过程。3 .能够根据题意正确画出物体或系统的初末状态图。4 .能够根据初末状态图正确列出机械能守恒的方程。教学过程 例1 :如图所示,两物体A和B通过一根不可伸长的轻绳相连,Bn中间是一个光滑的定滑轮。已知二者的质量分别为m和M , A 距离地面的高度为h。试求A刚和地面接触时B物体的速度。析由

20、题意可知,对于二者所构成的系统,在运动过程中(A和地面接触前)。机械能是守恒的。依 题意可画出系统运动的末态图形(如图所示)。以地面为参考平面,由机械能守恒定律可得(初态机械能等于末态机械能)Mgh = mgh +1 mv2 +1 Mv2解得:v _(2(M -m环M +mB丄A bAi 口 a此外,机械能守恒的表达式还有其它几种,比如:(1)系统重力势能的减少等于动能的增加:1 2 1 2Mgh-mgh=mv +Mv2 2(2) A减少机械能等于B增加的机械能:1 2 1 2Mgh-Mv =mgh + -mv(3) A减少的重力势能转化成了 B的重力势能以及A和B的动能:1 2 1 2Mgh

21、 = mgh + mv + Mv2 2实际上,不管怎么样,只要能把机械能守恒的意思表达清楚。选用哪种表达式并不重要,而且各种表 达式我们都要了解,因为在不同的环境中它们各有各的优点。学生思考 在上题中,若M =4m,试求B物体能上升的最大高度。例2 :如图所示,A穿在一光滑杆MN上,A、B两物体由一根不可伸长的轻绳相连,初始时左侧绳子与水平方向的夹角为日,两小滑轮的高度均为h。已知A的质量为mA,B的质量为me,不计一切摩擦。试求运动过程中A物体的最大速度。析 题中要求求A所出现的最大速度,首先我们需要找到A出现最大速度的位置。由此,我们对A进行运动分析:初始时,A的速度为零,受一个斜向右上方的力作用,速度将越来越大,这样一直持续到左侧小滑轮的正下方。当物体过左侧小滑轮的正下方后,绳子的拉力变成了阻力,物体 A的速度开始减小。由上面的分析可知:A的最大速度出现在A位于左侧小滑轮正下方时。而此时 B物体的速度为零。整个过程机械能守恒,我们画出要研究的末态图形(如图所示),有:1 2mB2mAV其中解得:何Agh(1-sin 巧mA sin 日例3 :如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论