




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、习题二2.1设质量力z 2222(y yz z)i(z zx x)j(x2 xy y2)k在此力场中,正压流体和斜压流体是否可以保持静止?说明原因。uvrr 22 r解:Q f(2y 2z)i(2z 2x)j(x2xy y2)k0uur ur uv f ( f)2y3 2z3 2z3 2x3 2x3 2y3固正压流体不能保持静止,斜压流体可以保持静止。2.2 在自由面以下10m深处,水的绝对压力和表压分别是多少?假定水的密度为31000kg gm ,大气压为 101kpa。解:表压为:PiP Pogh=1000*9.81=98100pa.绝对压力为:pP! p0 =98100+101000=1
2、99100pa.2.3 正立方体水箱内空间每边长0.6m,水箱上面装有一根长 30m的垂直水管,内径为25mm,水管下端与水箱内部上表面齐平,箱底是水平的。若水箱和管装满水(密度为31000kg gm ),试计算:(1)作用在箱底的静水压力;(2)作用在承箱台面上的力。解:(1)gh =1000*9.8* ( 30+0.6)=300186pagv =1000*9.8*(0.216+0.015)=2264N.2.4如题图2.42 2所示,大气压力为 pa=100kN gm ,底部A点出绝对压力为 130kN gm ,问压力计B和压力计C所显示的表压各是多少?-卜=A丄=Im1腿图2- 4解:C表
3、显示:Pc Pagh1=130-92.81*1=120.43kN gmB表显示:, 2Pb Pagh2 =100+9.81*1*3=139.43kN gm2.5倾斜式微压计由贮液杯和倾斜管组成,如题图2.5所示,贮液杯内自由面上的压力为大气压力Pa,斜管接待测压力 P(Pa),若P= Pa时斜管中液柱读数为 a,试证明PaPg(a a)(1sosin)S式中,a为测压时斜管中液柱的读数;s为斜管的横截面积;so为贮液杯的横截面积;为斜管的倾斜角。证:由公式(2.4.1 )得:PaPg(hi h2) .(1)又 h| = (a a0)sinh? s=s (a a。)带入(1 )式中得:Pa Pg
4、(a ao)(1ssosin)sin2.7潜艇内气压计读数为P1 =800mmHg,汞测压计测到的水压读数为p2=400mmHg,若海平面上汞测压计的大气压力为760mmHg,海水平均密度1026kg gm2.8用题图2.8所示装置测量贮水旗 A的中心C点处的压力,测得h =60cm,经查发现管路中的空气没有排除,空气所占的位置如题图2.8所示,水的密度为1000kg gm 3,水银的密度为13600kg gm 3,试问这会带来多大的误差。解:C点实际压强:pcPa ig h 0.8 g g 1.5 gPa 0.6 ig 1.7 g测量值:Pc Pa 0.6 g实际值:h 0.6 ig7 g1
5、压力误差:丛一Pc 100%8.6%Pch相对误差为:一-100%17.6%h2.10如题图2.10所示,圆柱容器内装水,高度为600mm,再装密度为800kg gm 3油,油层高度为900mm,油面以上的压力为 20kpa的空气,求作用于圆柱容器侧面上的压力中心的位 置。解:取如图坐标系:上半圆面形心深度为:hc10.94r=0.6452m下半圆面形心深度为:4r hc2 0.9=1.1548m3油 ghcr =25065.1pahc2处的压强为:P2 0.2 105作用于侧面上的力为:油 g 0.94r29562.6paF=(p1p2)S=30.88kN0.64520.110.64=0.6
6、843m0.64522 r21.15480.114 r=1.1766m1.15482 r2上半圆面,求压力中心:hcpcphcp2Q R1 FRh 2 Rhhcpp1Sh1 p2Sh 2 0.950m(P1 P2)S2.11船闸宽6m,关上两扇闸门正好形成 120。角的人字形(见题图2.11),闸门高 在门底以上0.6m处,上铰装在底面以上 5.4m处。当闸门一侧挡水深度在底部以上 一侧为1.5m时,求水的压力引起的闸门之间的作用力,以及两铰上的约束反力。6m,下铰装4.5m,另/ 一E */ / A Z顧图2. 11解:分析其中的一扇门,一侧压力R1ghc1S1=344kN压力中心(1.73
7、,1.5)m另一侧 R2ghc2S? =38.2kN压力中心(1.73,0.5) m(1)以过铰接处垂线为轴M xl (N2N1) =025 hci处的压强为:Pi 0.2 10X=152.94kNN= V X2 Y2 =305.86kNY= .3x=264.9kN(2)Y tgX1.732=60 Fxx1x2 x N2 N10XiX152.86kN.(1)M yNd N2d2 X2d5.4 Xrdr.0.6 6.(2)由(1),(2)得:X1=-11.12kNx2=164.0kNFy丫 丫2 Y 0闸门之间的相互作用力Y 丫2 得 丫 Y2=132.45kN习题三3.1已知二维速度场3y2i
8、2xj求(x,y)=(2,1)点的:(1)速度;(2)当地加速度;(3)迁移加速度;(4)与速度矢量平行的加速度分量;(5)与速度方向垂直的加速度分量。解:3y2i 2xj(1)(2,1)3i4j(2)a当地t0(3)x方向a迁xxyy3y2c02x6 y24ixyY方向a迁xxyy3y2c22xc06jxy(4)rr3r 4r方向角eti55jaa迁a当地24i6j|agpn |=96/2596/25et 11.52i 15.36 j(5) agen =0r r4/5i3/5jI agen 1=78/2578/25en12.4 8i9.36 j3.2已知二维速度场x22y x,2xy y,压
9、力场为p 4x3 2y2解:3.3解:(x,y) =(2,1)点的:加速度分量ax,ay:(2)压力变化罟axayDpDtD xDtD yDt(Vg )(Vg )对下列速度场,式中(1)(2)(3)(4)(1)dxay, y 0;ax-22 ,x yay2xcos2rdyV;-35 y260y 15a为常数,求流线簇,并画出流谱。ay;2 2 ;x ysin2rax-2 xdy=0dxdyaxay2 2x y2 2x y:ln y+cx=cydxdyayax2 2x y2 2x yaydxxx2dyyxdx=_ydydr(4)cosrddrsinr22rrLn r=ln sin+cr =c s
10、in3.4已知 x axt2, yaycos dsin解:流线仝 dy 2 ax t ay tIn ax t2 =-ln ay t2(ax t2)(ay t2)=c12t , z 0,a为常数,求流线和迹线。dz0z =c2dx2 dtax t迹线dy2ay t dtdz0 dt解非线性方程,x at t2.2y ay t dz 0形如 y p(x)y(x) Q(x)出少dx p(x)dx y(x) y(x) ln(y) V(x) p(x)dxyeV(x) e 山p(x)dxy cep(x) dx ep(x)dxQe dxatt22t_2xGe23aaa所得迹线方程yatt2Qe2t223aa
11、azc3齐次方程解非齐次方程的解3.5试推导圆柱坐标系的质量守恒方程:(r x) (r J (r )0圆柱坐标系中的微元控制体如图3.5所示。fit 3-b解:dr rddx(rdr rd dx-J dr rddx -(r)dr rd dx 0trxr rr(rx)dr d(r r)d dx(r)drdxdrrddxdx -rdrd0txr微元内的质量变化沿x方向流出的质量3.6设空间不可压流的两个分速为2x axby22cz ,y dxy eyz fzx式中,a、b、c、d、e、f为常数,求第三个分速解:质量守恒:xyz0xyz2ax(dxez)zzz2 ez2(d2a)xzH(x,y)3.
12、7如题图3.7所示,气体以速度u(x)在多孔壁圆管中流动,管径为do,气体从壁面细孔被吸出的平均速度为v,试证明下列式成立:_( U) 4t xdo解:质量守恒:nds 0cs-(虫)2 t 2 ( u)t xdxdxx/屯4(学)2d0 dx d 03.8已知理想不可压流场2xyi2y j ,试求x方向的压力梯度及(i,2)点的压力梯度的大小,不计重力影响。解:动量守恒:D iDtXi已知不可压2xyi定常2xyVipx12y(2xy) 2x(2xy2V2 亠iXixV2亠2X2X22y3p y_px22xy2y33.9证明柱点附近的流场UL0x,yU0y, z0为N-S方程的一个精确解,式
13、中,U。,L为常数,并计算压力场(x,y).证明:连续方程N-S方程2月0、2()xP 1p1(x)2f(y)Lx2L从2()yP 1p1(:0y)2f(x)2LyL所以p12c2习题四4.1如题图4.1所示,海平面上空气通过管道被吸进真空箱,管道内的流动不考虑粘性和o po2压缩性影响,现测出管道 A-A截面上的静压力为9.6 104 Pa,求该截面气流的速度。解:2;2(Po P)4.2如题图4.2所示,用皮托管测量水的流速时,它的低端开口面向来流,其轴线与来流平 性,管内水位高出水面5cm,求水流速度。12解: JP)= J2gh =0.99m/s4.3鱼雷在5m深的水下以50kn的速度
14、运动,根据相对性原理,这种运动可视为无穷远处来 流以流速50kn绕鱼雷流动。解:(1 )由伯努力方程:aPab Pb兀飞 2 2Pa Pb(专专)43821Pa(2 )由伯努力方程:2 2aPab Pb二二A .2(Pb Pa)b2 30m/s开始出现空泡的航速为 30m/s 4.4如题图4.4所示,只要给虹吸管以足够的吸力,吸取容器中的流体形成连续的流动,这一流动将一直持续下去直到吸干容器中的流体为止,不考虑损耗,求:(1)出口速度(2)虹吸管中的最低压力。(1 )由伯努力方程:解:212212乂 QPaHgPaH2(2)2221$2Hg2S2.2Hg由P3(H L)g題图4. 4P3 Pa
15、 (H L)g4.5在文特利管中有空气流动。在其最窄截面1-1处开一孔截小竖管(见题图 4.5),小管插在水中,水面在管轴线以下 0.2m处,截面2-2通大气。以知管径 d仁20mm,d2=40mm,问流 量多大时才能将水吸入气流中。21Pi22 p22 -又 Q 1s12S2要将水吸入水流中,则有3p1 p2水gh 1.96 10 pa214.75m/s流量为 Q2s2 =0.02035 m3 / s当上板以x处4.6两块二维平行平板各长 2L,相距b(见题图406),且bv2t当t3(4 h)120S时h 1.5608m4.10水平放置的u型弯管如题图4.10所示,弯管两平行轴线相距为I,
16、管截面积由s仁50变到s2=10,s2截面通大气。水流体积流量q=0.01,求水流对弯管的作用力及做用点的位置。2 21 p1 2 p22 2又因为qV|S2V2V| =2m/sv2=10m/sRx (P1Pa)12(P2Pa)2 s? cosRy (P2Pa)22s sin代入Rx360, Ry0对1-1截面 由动量距方程IR2s2l / Rx0.28l4.11如图4.11所示,弯嘴管头Pa)22S cos2解.Rx (P1Pa)1 S1 (P22Ry (P2 Pa)2$s in90?r216m/ s4Pl Pa 12.8 10 paQ v1s v2S2v14/9m/ sM 0.1 Rx 0
17、.2 Ry 32 Nm420cmA, 114.12如题图4.12所示,一平板垂直插入水柱内,水柱速度为30m/s,总流量为30kg/s,分流HR 12量为12kg/s,试求水柱作用在平板上的力和水流偏转角。解:由连续方程0 1 220118kg/s设平板水流合力为F,方向向左则:2v2si n1v1 0F2V2COS且v v2 v0贝Usin 2/3F 497.5N习题55.1 已知 Vx y 2z,Vy z 2x,vz x 2y,求:(1)涡量及涡线方程;(2)在z=0平面的面积dS=0.0001上的涡通量。 解: (1)zyxzyX i(- )i (-)j ()ky z- xx y(2 1
18、)i (2 1)j (2 1)ki j k所以流线方程为 y=x+c1,z=y+c22 Jwnds 2*0.5*0.00010.0001m /s0的旋涡,求下列路线的5.4设在(1, 0)点上有o的旋涡,在(-1, 0)点上有 速度环流。(1)x2 y2 4;(x 1)2 y2 1;(3)x2,y2的方框。(4) x0.5,y0.5的方框。解:(1 )由斯托克斯定理可知:因为涡通量为0,所以? vdl 2 wnds 0cs(4)由斯托克斯定理可知:因为涡通量为0,所以 ? vdl 0c5.6如题图5.6所示,初始在(0,1 )、(-1,0)、( 0,1 )和(0,-1)四点上有环量等于常值的点
19、涡,求其运动轨迹。解:取其中一点(-1,0)作为研究对象。VCAVBA42.2VBA2、234va vca vba cos45 vba cos 45由于四个涡相对位置将不会改变,转动角速度为:ar 4v wt3用极坐标表示为r=1,t4同理,其他点的轨迹与之相同。5.10如题图5.10所示有一形涡,强度为,两平行线段延伸至无穷远,求x轴上各点的诱导速度。解:令(0, a)点为A点,(O.-a)为B点在OA段与OB段V2(cos904 x一22 )a x(cosO4 xaVx 2( V2)(x . a2 x2)2 xaJg图 5.10习题六 6.1平面不可压缩流动的速度场为(1) Vx y,Vy
20、 x; Vx x y, Vy x y;22c Vx X y ,Vy2xy y;判断以上流场是否满足速度势和流函数存在条件,进而求出。 解:存在V 0存在Vx( Vy)x y(1)存在山-2(2)VyxVxx(3)VxxVydx vxdy(Vx)2y1( Vy)yVxdx Vydy2乞+c(x y)yx3/3+x 2/2-xy2-y2/2+cVy)2x 1- 2x 1y-Vydx Vxdyy3/3+x2y +yx+c6.2证明函数f=xyzt是速度势函数,而且流场不随时间变化。 证:f=xyzt1) 2 02) ( ) 0f是速度势函数流线方程空业竺竺理空yzt xzt yxt yz xz yx
21、流场不随时间变化6.3有一种二维不可压缩无旋流动,已知Vx kxy,k为常数,求Vy。解:Q 无旋(Vx)0x yVy2kx Vy kx cyxQ不可压0x yVy2ky Vy ky exy2 2Vy k(x y ) e6.4已知速度势,求复势和流函数:(1)Uxx2(2)Uxy .2 2,x y(3)2y ;、2 2,a) y解:按题意,i应有1)UxUzx-2 x1/ z为均匀流动,叠加一偶极子 yi U (iy)2) Uxw UzIm(二)Uyi zgz_y2 xi /zyi2 2x y为均匀流动,叠加一偶极子旋转90?yi U (iy)二) zgz2 2 (X a) yIm(Uyixi
22、-2xUy3) ln 2 (x a)z a w 2lnz aIn Re(za)2In Re(za)22In Im(z a)2In Im(z a)ln x x a6.5分析如下流动是由那些基本流动组成: 解:(1)匀直流点涡 偶极子(2) 点源点汇 两点涡(3) 两源一汇6.6幕函数 W Azn,式中A为实常数,n二/a,/2,0a/2 , /2a2105kN / mPdp 0.5 v 1(2sin2 v a2165kN / mVb21m/ sVd 19m/ s6.11已知流函数试求:(1)组成此流动的基本流动;(2)处的速度;(5)作用在物体上的力。解:公式6.3.7rg/r100y(125)
23、r s in r(1)Vr100y(125、2)cos rv100y(125、2 )sin r100r sinvr.vwi(2)驻点sin0.14 v a(5)100y(1 禽628 rIn , rx25驻点的位置;(3)绕物体的速度环量;(4)25 2628 55.74or185.74无限远6.28 1076.12直径为长度上的升力是5.88kN,试计算他的升力系数和转数。解:Cl0.50.6m的圆柱以6m/s的速度在静水内作水平直线运动,同时绕自身轴旋转,每米2sL_20.54v gs0.9816.5r / min6.13如题图6.13所示,在(-2, 1)点有一强度为Q的点源,求第二象限
24、直角流场中的复势。 解:源 w0In (z zJ2Y轴对称 w1ln( z z0) In(z ( Z0)2W对x轴对称 wln( z z0) In(z ( z0)2厂|n(z zo) In(z ( z0)厂1n(z2 z2)(z2 z02)6.14求题图6.14所示点涡的轨迹,已知通过(.2,. 2 )点。解:点涡:w0w.eirVac246rVad22血题图6.14r fVAB22运rrrVACVADVAB亠8x2 y246.19在深水处有一水平放置的圆柱体,半径为0.1m,每米长的重量为 G=196N,如果垂直向下对每米长度圆柱作用力是F=392N,求圆柱的运动方程。解:Gm 20 kgg
25、F G F浮 (m )aa 5.47hh0 v0t 2.73t26.21如题图6.21所示,半径为R的二维圆柱体在无界流中绕O轴旋转,角速度为,同时又以角速度自转,假设缆绳长lR,圆柱体重为G,l流体密度为,求缆绳所受的张力。解:向心力 F向 = ( R G/g)g l升力 L v 2 R2w lF向F LF 2 R2w l ( R2 G/g)g 2l习题八8.1证明W( ) Acos(k( id ct)是水深为d的水域中行波的复势,其中 x iz , z轴垂直向上,原点在静水面,并证明c2 th (kd)k证:将 x iz代入原式W( ) Acos(k( id ct) = Acos(k(x iz id ct)Acos(k(x ct)所以是行波的速度势2 kgthkdc2 gth(kd)k8.2 d=10m的等深度水域中有一沿 x轴正向传播的平面小振幅波,波长L=10m,波幅A=0.1m,试求:(1) 波速、波数、周期;(2) 波面方程;(3) 平衡位置在水面以下0.5m流体质点的运动轨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间及工期管理办法
- 新民警教育管理办法
- 旧机电进口管理办法
- 寺庙功德箱管理办法
- 千级无尘室管理办法
- 北京机动车管理办法
- 员工感恩金管理办法
- 某医院招聘管理办法
- 村级饮水员管理办法
- 哈尔滨概算管理办法
- 2024年2个娃儿的离婚协议书模板
- 旅行社合作协议三篇
- 《微机原理》微型计算机原理全套教学课件
- 高速公路收费人员操作规范DB41-T 610-2016
- 人教版九年级(初三)物理全一册全套课件
- 2025高考物理步步高同步练习选修1第一章 动量章末检测试卷(一)含答案
- 新人教版七年级上册英语全册课件(2024年新版教材)
- 前程无忧国企招聘笔试题库
- 学校物业管理服务投标方案(技术方案)
- 中国绿色算力发展研究报告(2024年)
- 版茶叶购销合同电子版
评论
0/150
提交评论