塑料注射成型机液压系统设计._第1页
塑料注射成型机液压系统设计._第2页
塑料注射成型机液压系统设计._第3页
塑料注射成型机液压系统设计._第4页
塑料注射成型机液压系统设计._第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章工况分析1.1注塑成型动作过程大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺 旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘 液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时, 注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将 成型的塑科制品顶出,便完成了一个动作循环。1.2液压传动系统主要传动动作所设计的液压系统,传动动作的完成,主要靠合模液压缸、注射液压缸、注射座移动 缸和一个液压马达作为主要传动元件。具体的动作循环过程见下图:冷却合模I |注射I = |保压|注射座

2、后退I预塑开模顶出制品顶出缸合模图1-1注塑机工作循环图在合模时,合模缸先驱动动模板慢速启动,然后快速前移,接近定模板时转为低压慢 速前移,在低速合模确认模具无异物存在后转为高压合模(锁模)。1.3注射机液压系统的设计要求和主要设计参数1.3.1注射机液压系统的设计要求:1.3.1.1合模运动要平稳,两片模具闭合时不应有冲击;1.3.1.2当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射 机构应保持注射压力,使塑料充满型腔;1.3.1.3预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退, 为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力

3、;1.3.1.4为保证安全生产,系统应设有安全联锁装置。1.3.2液压系统设计参数:1.3.2.1 螺杆直径d = 40 mm。1.3.2.2 螺杆行程S1 = 200 m。1.3.2.3 最大注射压力p = 153 Mpa。1.324注射速度1.3.2.5螺杆转速vw = 0.07 m/s n = 60 r/min。1.3.2.6 螺杆驱动功率Pm = 5 kw1.3.2.7 注射座最大推力 Fz = 3 W4 No1.3.2.8注射座行程S2 = 230伽。1.3.2.9 注射座前进速度Vz1 = 0.06 m/so1.3.2.10注射座后退速度vz2 = 0.08 m/s。1.3.2.1

4、1最大合模力(锁模力)Fh = 90 104 N。1.3.2.12 开模力Fk = 4.9 104 No1.3.2.13动模板(合模缸)最大行程S3 = 350伽1.3.2.14快速合模速度VhG :=0.1 m/s。1.3.2.15慢速合模速度Vhm :=0.02 m/so1.3.2.16快速开模速度VkG :=0.13 m/s。1.3.2.17慢速开模速度Vkm ;=0.03 m/s。1.3.2.18注射速度0.07m/s1.4液压系统执行元件合模缸、注射缸、注射座移动缸和液压马达第二章注塑成型机液压系统方案设计sz250A型塑料注射成型机液压系统以多执行元件工作为主特点,它的动作循环为“

5、合模缸合模一注射座缸前进一注射缸注射一保压一冷却一注射座缸后退一合模缸开模 顶出缸顶出制品一顶出缸后退”,在制品冷却的同时,液压马达带动螺杆旋转对颗粒状 塑料预塑。动作循环中不同工作阶段的速度、压力要求相差较大。这里采用了双联泵供油 系统,速度高时采用双泵供油,速度低时采用一个泵供油,一个泵卸载;不同工作阶段的 工作压力则由先导型溢流阀与多个远程调压、电磁滑阀组成的多级调压回路控制;注射、 顶出、预塑的速度微调由节流阀或旁通型调速阀调节。各执行元件的换向回路根据实际通 过的流量采用电液换向阀或电磁换向阀。多个执行元件的动作顺序由行程开关控制,这种 控制方式机动灵活,系统较简单。2.1能源装置(

6、元件)方案设计该液压系统在整个工作循环中需油量变化较大,另外,闭模和注射后又要求 有较长时间的保压,所以选用双泵供油系统。液压缸快速动作时,双泵同时供油,慢速动 作或保压时由小泵单独供油,这样可减少功率损失,提高系统效率。因为设备为固定设备, 为便于油液冷却,系统选用开式回路,工作介质选用HL-N32普通液压油。2.2调速回路(元件)方案设计因对控制精度要求不高,系统采用开环控制,各执行元件的动作顺序由电气控制(各 执行元件的换向阀选用电磁换向阀),如 PLC控制。因250g注塑机属小功率设备,故选 用定量泵节流调速,系统压力选用弹簧加载式多级调压。 各执行元件的换向阀选用三位阀, 因各执行元

7、件是依次单独动作,各换向阀的中位机能选为 0”型。系统不工作时,液压泵通 过电磁溢流阀卸载。2.3 速度换接回路方案设计速度换接回路的功能是使液压执行机构在一个工作循环中从一种运动速度变换到另 一种运动速度,因而这个转换不仅包括液压执行元件快速到慢速的换接,而且也包括两个 慢速之间的转换。实现这些功能的回路应具有较高的速度换接平稳性。2.4 执行机构的确定本机动作机构除螺杆的旋转选用液压马达外,合模、注射、注射座移动等均为双向运 动,因前进负载力大于返程力,因此选用水平放置的单活塞杆液压缸直接驱动,螺杆则用 液压马达驱动。从给定的设计参数可知,锁模时所需的力最大,为900kNo为此设置增压液压

8、缸,得到锁模时的局部高压来保证锁模力。2.5液压马达动作回路螺杆不要求反转,所以液压马达单向旋转即可,由于其转速要求较高,而对速度平稳 性无过高要求,故采用旁路节流调速方式。2.6合模缸动作回路合模缸要求其实现快速、慢速、锁模,开模动作。其运动方向由电液换向阀直接控制 快速运动时,需要有较大流量供给。慢速合模只要有小流量供给即可。锁模时,由增压缸 供油。2.7注射缸动作回路注射缸运动速度也较快,平稳性要求不高,故也采用旁路节流调速方式。由于预塑时 有背压要求,在无杆腔出口处串联背压阀。2.8注射座移动缸动作回路注射座移动缸,采用回油节流调速回路。工艺要求其不工作时,处于浮动状态,故采 用Y型中

9、位机能的电磁换向阀2.9安全联锁措施本系统为保证安全生产,设置了安全门,在安全门下端装一个行程阀,用来 控制合模缸的动作。将行程阀串在控制合模缸换向的液动阀控制油路上,安全门没有关闭 时,行程阀没被压下,液动换向阀不能进控制油,电液换向阀不能换向,合模缸也不能合 模。只有操作者离开,将安全门关闭,压下行程阀,合模缸才能合模,从而保障了人身安 全。2.10 系统原理图见图2-1,附图一:35誉對:亠关nuI庚_ _i II -iLF1Y 一I11-ra;計LJMT叩二二曜杆”r?-p TEr -oJ(jLUH-jA 7LW31 V-J n i 16XT THH Tnr片1irrn uiXLL冈J

10、.图2-1 SZ-25OX型注塑机液压系统原理图第三章注塑成型机液压系统计算与液压元件的选择塑料注射成型机的组成塑料注射成型机是将粒状或粉状塑料加热塑化然后注射到模腔、保压成型的设备,主 要包括注射装置和合模装置两部分。1 注射装置注射装置的主要任务是使塑料均匀地塑化成熔融状态,并以足够的压力和速度将熔料 注入模腔。注射装置又包括塑化部件(料筒、螺杆、喷嘴和电加热器)、料斗、螺杆传动装置、注射缸、注射座移动缸等。其中注射缸、注射座移动缸和螺杆传动等由液压传动来 实现。2 合模装置合模装置是保证成型模具可靠地闭合、实现模具开闭动作以及顶出制品的部件。合模 装置主要由固定模具的定模板、动模板、合模

11、缸及顶出缸组成。动模板与合模板可以是直 接连接,也可以是通过连杆机构连接。合模缸和顶出缸也由液压传动来实现。3.1各液压缸的载荷力计算3.1.1合模缸的载荷力合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯性力和 导轨的摩擦力。锁模时,动模停止运动,其外载荷就是给定的锁模力。开模时,液压缸除要克服给定的开模力外,还克服运动部件的摩擦阻力。3.1.2注射座移动缸的载荷力注射座移缸在推进和退回注射座的过程中,同样要克服摩擦阻力和惯性力,只有当喷 嘴接触模具时,才须满足注射座最大推力。3.1.3注射缸载荷力注射缸的载荷力在整个注射过程中是变化的,计算时,只须求出最大载荷力。兀 2

12、Fwdp4(3-1 )式中,d螺杆直径,由给定参数知:d = 0.04m;p喷嘴处最大注射压力,已知 p= 153MPa由此求得Fw= 192kN各液压缸的外载荷力计算结果列于表I。取液压缸的机械效率为 0.9,求得相应的作用于活塞上的载荷力,并列于表 3-1中。表3-1各液压缸的载荷力液压缸名称工况液压缸外载荷F/kN活塞上载荷力F/kN合模缸合模90100锁模9001000开模4955座移缸移动2.73顶紧2730注射缸注射1922133.2进料液压马达载荷转矩计算Pc2 二n5032 3.14 60/60= 796N(3-2)取液压马达的机械效率为0.95,则其载荷转矩T =西 796

13、=838N m(3-3)m 0.953.3执行元件几何尺寸的确定250g注塑机为小型设备,从设备的可靠性出发,初定系统工作压力p = 6Mpa,液压泵选用双作用叶片泵。3.3.1确定合模缸的活塞直径Dh和活塞杆直径dh因合模缸的最大合模力(锁模力)远大于其他负载力,为匹配合理,合模缸采用增图3-1合模缸 力比为5/1的五连杆增力机构。由此可求得合模缸活塞杆直径4X90M1043.14沢6 艸6=0.195m(3-4)圆整后取Dh=200mm。因合模缸受压,且推力较大, 取活塞直径dh = 0.7Dh = 140 mm因此,合模缸大腔面积 Ahi = 3.14 W2 m2,合模缸小腔面积Ah2=

14、 1.6 10-2川。3.3.2确定注射缸的活塞直径Dw和活塞杆直径dw 注射缸的载荷力是变化的,这里按最大载荷计算2 2最大载荷Fw= p = 3.14 0.04 153 106 N= 19.2 W4N(3-5)44 4活塞直径Dw =4Fw = / 19.2 106 m = 0.201m(3-6)F 叩1ll 3.14X6X10圆整取 Dw = 200活塞杆直径等于螺杆直径dw = d =40伽。因此注射缸大腔面积Aw1=3.14 为o-2 m ,小腔面积 Aw2=3.01 为o-2 m3.3.3确定注射座移动缸的活塞直径 Dz和活塞杆直径dz已知注射座移动缸的往返速比i = 0.08/0

15、.06 = 1.33,因此取活塞杆直径 dz=0.5Dz活塞直径Dz =4Fz =4 3 10=0.08m(3-7)叩13.14X6X106圆整后取Dw= 100活塞杆直径dw = 50伽。因此取注射座缸大腔面积:Az1 = 0.785 10-2 m,小腔面积 Az2 = 0.589 10-2 m。3.3.4确定液压马达的排量V螺杆为单向旋转,且转动惯量不大,因此取马达出口背压为零,马达总效率m = 0.9,液压马达的排量:Vm =Pm=m3/r=0.92 1%-3m3/r(3-8)P1 Sn/600.02=0.628 1X m /s=37.7L/min(3-16)低压合模所需的流量按慢速合模

16、所需流量,高压合模(锁模)的流量近似为零。3.4.2.2快速合模所需的流量qhG=Ah1VhG=3.14 10-2 0.1=3.14 10-3m3/s=188.4L/mi n(3-17)3.4.2.3慢速开模所需的流量qkm=Ah2Vkm=1.6 为0-2 0.03=0.48 10-3m3/s=28.8L/min(3-18)342.4快速开模所需的流量qkG=A h2VK g=1.610-2 .13=2.08 -3m3/s=124.8L/mi n(3-19)3.4.2.5注射缸注射所需的流量qW=AW1VW=3.14 0-20.07=2.22 -3m3/s=133.2L/min(3-20)3.

17、4.2.6注射座缸前进所需的流量-2-3 3qz1=Az1Vz1=0.785 0 X0.06=0.47 m /s=28.3L/min(3-21)3.4.2.7注射座缸后退所需的流量-2-33qz2=Az2Vz2=0.589 X0 X0.08=0.47 X m /s=28.3L/min(3-22)3.4.2.8预塑进料马达所需的流量-33qM=nVM MV =60 0.9 X.95=51.3 X m /s=51.3L/min(3-23)3.5 液压泵的选择注塑机的各执行元件为依次单动,不存在多个执行元件同时动作的问题。考虑到泄漏的影响,各工况下液压泵应供给的流量为qp=Km,取泄漏系数K=1.1

18、;而各种工况下液压泵的出口压力pp=p1+.沖,取进油路上的压力损失 厶p=0.30.5MPa。各工况下液压泵的流量 需求及工作压力见表3-2表3-2各工况下液压泵的流量需求、工作压力、双泵的供油方式及调速情况工况流量需求L/min工作压力/MPa供油方式流量供需关系是否调速大泵/L/mi n小泵/L/min快速合模207216746.9相当否慢速合模372卸载46.9相当否快速开模137.34163. 1卸载略大否慢速开模31.74卸载45.8略大否注射146.56.9157.3卸载相当进油节流调速注射座移动31.15.7卸载44.8略大否预塑进料56.46.5158.3卸载大大超过旁路节流

19、调速由于需求的最大流量(207L/min)为最小流量(31.1L/min )的6倍以上,为保证功率 利用合理,选择双联双作用叶片泵YYB-BC171/48,双作用叶片泵密封容积大小变化是由于定子内环圆弧段存在半径差,叶片外伸依靠叶片根部的液压作用力及作用在叶片上的离 心力,内缩依靠定子内环约束。各工况下双泵的供油方式及调速情况见表3-2所示。注意:当YYB-BC171/48型双联双作用叶片泵在额定转速 ns=1000r/min时,大泵的理论流量qti=171L/min,小泵的理论流量qt2=48L/min。额定压力ps=7MPa时,大泵的额定流 量qs1=157.3L/min,小泵的额定流量q

20、s2=44.1L/min,两泵的容积效率约等于92%。当泵的工作 压力小于额定压力时,其输出的实际流量在理论流量与额定流量之间。分析流量需求时, 可根据泵的实际工作压力p按下式计算q=qt v,式中v=0.08 ?口+0.92。也可简单地视为Ps任何压力时的流量均等于额定流量。本例按前者计算对于双作用叶片泵,由于吸、压油腔转移的位置为定子的圆弧段,只要设计时取圆弧 段的圆心角大于吸、压油窗口的间隔角及叶片间的夹角,贝U闭死容积不会发生,所以可以 有效的避免困油现象的发生。3.6 溢流阀的选择3.6.1根据前面的分析将系统的工作压力分为5级:预塑进料及注射6.56.9MPa高压合模及注射座移动5

21、.73MPa开模低压合模 注射保压4MPa(含快速、慢速合模 2MPa压力由工艺要求而定压力由工艺要求而定因在系统方案设计中已确定大小泵出口分别设置电磁溢流阀,现将溢流阀4调整为最高压力7MPa (溢流阀3调整压力等于或略大于溢流阀 4调整压力),在注射、预塑进料 时作定压阀或安全阀;在溢流阀 4的四个远程调压阀中,17调整为低压合模的工作压力, 18调整为注射保压压力,20作慢速开模时的定压阀(4MPa)、快速开模时的安全阀,19 限制锁模时的最高压力5.73MPa,同时作注射座移动安全阀。3.6.2由大小泵的流量,选定电磁溢流阀的型号:大泵YEF3-32B,小泵YEF3-10B,远程调压

22、阀型号YF3-6B,电磁先导换向阀型号34EF3O-E6B。3.7换向阀的选择3.7.1因合模缸的最大流量为207L/min,因此换向阀选用中位机能为0型三位四通的电液 换向阀34EYF3O-20B。为实现关闭安全门与合模互锁,在电液换向阀的先导阀至主阀的控 制油路上安装一行程阀。3.7.2注射座移动缸的流量为 44.8L/min,选中位机能为Y型的电磁换向阀34EF3Y-E10B, 中位也可以是O型机能。3.7.3注射缸注射时最大供油量为157.3L/min,选34EYF3J-20B电液换向阀,选用J型中 位机能的原因是,预塑工况、注射缸换向阀处于中位时,当螺杆头部熔料压力到达能克服 注射缸

23、后退的阻力时,螺杆开始后退,注射缸无杆腔的排油经单向节流阀14、电液换向阀15、背压阀16回油箱,注射缸有杆腔将产生局部真空,油箱的油液可经阀的中位补充其 内。3.7.4预塑液压马达的流量要求为56.4L/min,此时泵的供油流量为 158.3L/min,因此选34EYF3Y-20B电液换向阀,中位机能选Y型是考虑注射缸的要求。3.7.5顶出缸的流量很小,选用24EF3B-E10B电磁换向阀,在无杆腔装一单向节流阀,由 小泵实现进油节流调速。3.7.6为随时检测双泵的出口压力,选两个二位三通电磁滑阀及压力表组合使用。3.8流量阀的选择3.8.1预塑马达采用旁通型调速阀调速,选 FRG-03-B

24、-28-22。3.8.2注射缸采用单向节流阀调速实现进油节流调速,选LDF-B32C。3.8.3顶出缸的单向节流阀选LDF-20C。3.9背压阀及油箱的选择3.9.1 注射缸背压阀选 XFF3-20B。3.9.2设备为固定设备,油箱的容积取双泵总流量的5倍,即1000L。泵-电动机装置旁置在油箱边。3.10电磁铁动作顺序列电磁铁动作顺序表,见附表1 SZ-250A注塑机电磁铁动作顺序表3.11选定液压泵的驱动电动机 3.11.1各工况下电动机所需功率所选双联叶片泵的额定工况(7MPa)下总效率ps =0.8,卸载工况(0.3MPa)总效率 po=0.3,其他工作压力下的总效率,可近似按线性规律

25、估算,如pp=4MPa时,p=0.65;Pp=2MPa时,p=0.5.泵的压力取工作压力,流量取实际流量。由此可计算出不同工况时电 动机所需功率。快速合模(3-24)qp1 qp2Pp 2139 102 106 .P1=kw=14.2kwnp600.5慢速合模(3-25)171 100.3 10646.9 10 2 1060F6060kw=5.98kw=込3快速开模P3=qp1Pkqp2Px(3-26)36163.1 X104X106X600.6536 48X100.3X10+x600.5kw=17.5kw慢速开模P4=qp1Pxqp2Pk(3-27)f_36_36 171 工100.3 工1

26、06 45.8X104心0 _一汽+X kw=7.5kw600.3600.65注射qp1pwP5= Pqp2Px(3-28)pof3636、157.310“6.9 疋106 丄48X10 -0.3X10 _,= 汉+汉 kw=23.4kw600.8600.3/注射座移动qpiPxqp2Pz(3-29)_36_3171 100.3 1044.8 10X+0.360606、4x10x0.65kw=9.4kw预塑P7=q p1PMpsqp2Px+npo(3-30)*158.3 汉 10 606.5 106x0.848 10 +600.3 1060.3_kw=22.2kw比较各工况下所需功率,取最大值

27、,并考虑电动机可短时超载,选电动机丫200M-6,额 定转速1000r/min,额定功率22kw。3.12油管内径计算本系统管路较为复杂,取其主要几条(其余略),有关参数及计算结果列于表3-3表3-3主要管路内径管路名称通过流量/(L/s)允许流速/(m/s)管路内经/m实际取值/m大泵吸油管2.620.850.0630.065小泵吸油管0.73510.0310.032大泵排油管2.624.50.0270.032小泵排油管0.7354.50.0140.015双泵并联后 管路3.364.50.0310.032注射缸进油 管路2.664.50.0280.0323.13确定油箱的有效容积按下式来初步

28、确定油箱的有效容积:=aqv(3-31 )已知所选泵的总流量为201.4L/min,这样,液压泵每分钟排出压力油的体积 为0.2m3。参照表43取a= 5,算得有效容积为:33V= 5X 0.2m = 1 m第四章性能验算4.1验算回路中的压力损失本系统较为复杂,有多个液压执行元件动作回路,其中环节较多,管路损失较大的要 算注射缸动作回路,故主要验算由泵到注射缸这段管路的损失。4.1.1沿程压力损失沿程压力损失,主要是注射缸快速注射时进油管路的压力损失。此管路长5m,管内918kg/m3。径0.032m,快速时通过流量2.7L/S ;选用20号机械系统损耗油,正常运转后油的运动粘 度v = 2

29、7mm2/s油的密度p =油在管路中的实际流速为:4 2.7 102 = 3.36m / s-0.0322Vd 3.36 .3J 3981 .2300R e6v27 汇 10油在管路中呈紊流流动状态,其沿程阻力系数为:0.3164r025求得沿程压力损失为:,0.3164汉5汉3.362 汇918=-pi02560-03MPa3981汉 0.032 勺06 汉 24.1.2局部压力损失局部压力损失包括通过管路中折管和管接头等处的管路局部压力损失 p2,以及通过控制阀的局部压力损失 p3。其中管路局部压力损失相对来说小得多, 故主要计算通过控 制阀的局部压力损失。参看图2-1,从小泵出口到注射缸

30、进油口,要经过顺序阀 17,电液 换向阀2及单向顺序阀18。单向顺序伺17的额定流量为50L/min,额定压力损失为0.4MP& 电液换向阀2的额定流量为190L/min,额定压力损失0.3 MPa。单向顺序阀18的额定流 量为150L/min,额定压力损失0.2 MPa。通过各阀的局部压力损失之和为 p3,10.3时1卜。2笥= 0.31 0.34 0.23 MPa =0.88MPa从大泵出油口到注射缸进油口要经过单向阀13,电液换向阀2和单向顺序阀18。单向阀13的额定流量为250L/min,额定压力损失为0.2 MPa通过各阀的局部压力损失之和为:-p3,20.2 門1 250 丿0.3

31、40.23= 0.65MPa由以上计算结果可求得快速注射时,小泵到注射缸之间总的压力损失为:刀 p1= (0.03 + 0.88)MPa = 0.91MPa大泵到注射缸之间总的压力损失为:刀 p2= (0.03 + 0.65)MPa= 0.68MPa由计算结果看,大小泵的实际出口压力距泵的额定压力还有一定的压力裕度,所选泵 是适合的另外要说明的一点是:在整个注射过程中,注射压力是不断变化的,注射缸的进口压 力也随之由小到大变化,当注射压力达到最大时,注射缸活塞的运动速度也将近似等于零, 此时管路的压力损失随流量的减小而减少。泵的实际出口压力要比以上计算值小一些。 综合考虑各工况的需要,确定系统

32、的最高工作压力为6.8MPa,也就是溢流阀7的调定压力4.2液压系统发热温升计算4.2.1 计算发热功率液压系统的功率损失全部转化为热量发热功率计算如下Phr = Pr PcTt i4Piqiti对本系统来说,Pr是整个工作循环中双泵的平均输入功率Pi具体的pi、qi、ti值见表7。这样,可算得双泵平均输入功率Pr= 12kW表6-1各工况双泵输入功率工况泵工作状态出口压力/Mpa总输入功率/kW工作时间/S说明小泵大泵小泵大泵慢速合模+-3.680.361小泵额定流量Q1=0.74L/S大泵额定流量Q2=2.62L/S 泵的总效率:正常工作时np=0.8卸荷时np=0.3快速合模+44.16

33、17.32增压锁模+-6.80.38.90.5注塑+6.86.5827.83保压+-6.80.38.916进料+6.86.326.915冷却+-6.80.38.915快速开模+4.24.418.31.5慢速开模+-3.90.36.21系统总输出功率:求系统的输出有效功率:PV由前面给定参数及计算结果可知:合模缸的外载荷为 90kN,行程0.35m ;注射缸的 外载荷为192kN,行程0.2m;预塑螺杆有效功率5kW,工作时间15s;开模时外载荷近同 合模,行程也相同。注射机输出有效功率主要是以上这些。1553Pc(1.4 105 0.35 1.92 105 0.2 5 103 15)= 3kW

34、55总的发热功率为:Phr= (15.3-3)kW = 12.3kW4.2.2计算散热功率 前面初步求得油箱的有效容积为1m3,按V = 0.8abh求得油箱各边之积:a h= 1/0.8m3= 1.25m3取a为1.25m,b、h分别为1m。求得油箱散热面积为:At= 1.8h(a+ b) + 1.5ab2=(1.8 1.25+ 1) + 1.5 X.25)m2 = 5.9m2油箱的散热功率为:Phc= K1At AT式中Ki油箱散热系数,查表 5 1, Ki取16W/(m2C ); T由温与环境温度之差,取 AB 35 C。Phc= 16 5.9 %5kW = 3.3kWv Phr= 12.3kW由此可见,油箱的散热远远满足不了系统散热的要求,管路散热是极小的,需要另设 冷却器。4.2.3冷却器所需冷却面积的计算冷却面积为:Otm(12.3-3) 10116 27.5m2= 2.8m2 m平均温升(C ); =tm -2 2取油进入冷却器的温度 t尸25C,冷却水出口温度60C,油流出冷却器的温度 T2= 50C,冷却水入口温度 t2= 30C。则:負60 +5025 + 30-.:tm27.5 C2 2式中K传热系数,用管式冷却

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论