牛顿第二定律_第1页
牛顿第二定律_第2页
牛顿第二定律_第3页
牛顿第二定律_第4页
牛顿第二定律_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2牛顿第二定律教学目标:1 理解牛顿第二定律,能够运用牛顿第二定律解决力学问题2.理解力与运动的关系,会进行相关的判断3 掌握应用牛顿第二定律分析问题的基本方法和基本技能教学重点:理解牛顿第二定律教学难点:力与运动的关系教学方法:讲练结合,计算机辅助教学教学过程:、牛顿第二定律1. 定律的表述物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma (其中的F和m、a必须相对应)点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。若F为物体受的合外

2、力,那么 a表示物体的实际加速度;若 F为物体受的某一个方向上 的所有力的合力,那么 a表示物体在该方向上的分加速度;若 F为物体受的若干力中的某一 个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。2. 对定律的理解:(1) 瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时, 加速度也保持不变。 合外力变化时加速度也随之变化。合外力为零时,加速度也为零(2) 矢量性:牛顿第二定律公式是矢量式。公式a F只表示加速度与合外力的大小关m系矢量式的含义在于加速度的方向与合外力的方向始终一致(3) 同一性:加速度与合外力及质量的关系,是对同一个

3、物体(或物体系)而言,即F与a均是对同一个研究对象而言.(4)相对性;牛顿第二定律只适用于惯性参照系(5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子3牛顿第二定律确立了力和运动的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。 联系物体的受力情况和 运动情况的桥梁或纽带就是加速度。4应用牛顿第二定律解题的步骤 明确研究对象。 可以以某一个物体为对象, 也可以以几个物体组成的质点组为对象。 设每个质点的质量为 mi,对应的加速度为 ai,则有:F合=m ia什m2a2+m3a3+ +m nan对这个结论可以这样理解:先分别以质点组中的每个物体为研究对

4、象用牛顿第二定律:刀Fi=miai,刀F2=m2a2, 刀Fn=mnan,将以上各式等号左、右分别相加,其中左边所 有力中, 凡属于系统内力的, 总是成对出现并且大小相等方向相反的, 其矢量和必为零, 所以 最后得到的是该质点组所受的所有外力之和,即合外力 F。 对研究对象进行受力分析。 同时还应该分析研究对象的运动情况 (包括速度、 加速度), 并把速度、加速度的方向在受力图旁边画出来。 若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则 (或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动, 一般用正交分解法解题 (注 意灵活选取坐标轴的方向,既可以分解力,

5、也可以分解加速度) 。 当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析, 分阶段列方程求解。解题要养成良好的习惯。 只要严格按照以上步骤解题, 同时认真画出受力分析图, 标出运 动情况,那么问题都能迎刃而解。二、应用举例1力与运动关系的定性分析【例 1】 如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某 一高度处由静止开始自由下落, 接触弹簧后把弹簧压缩到一定程度后停止下落。 在小球下落的 这一全过程中,下列说法中正确的是A 小球刚接触弹簧瞬间速度最大B .从小球接触弹簧起加速度变为竖直向上C 从小球接触弹簧到到达最低点,小球的速度先增大后减小D

6、 从小球接触弹簧到到达最低点,小球的加速度先减小后增大解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球 速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。【例2】如图所示弹簧左端固定,右端自由伸长到0点并系住物体 m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点如果物体受到的阻力恒定,则A .物体从A到0先加速后减速i 1 .i-AAAA-H 门 1 ;丿八小j八儿B .物体从A到0加速运动,从 0到B减速运动C .物体运动到 0点时所受合力为零D .物体从A到0

7、的过程加速度逐渐减小解析:物体从 A到0的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向 右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的 加速度向右且逐渐减小, 由于加速度与速度同向, 物体的速度逐渐增大. 所以初始阶段物体向 右做加速度逐渐减小的加速运动.当物体向右运动至 A0间某点(设为0 )时,弹力减小到等于阻力, 物体所受合力为零, 加速度为零,速度达到最大.此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至0点时弹力减为零,此后弹力向左且逐渐增大.所以物体从0点后的合力方向均向左且合力逐 渐增大,由牛顿第二定律可

8、知, 此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.正确选项为A、C.点评:(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大, 加速度为零.这 显然是没对物理过程认真分析, 靠定势思维得出的结论. 要学会分析动态变化过程, 分析时要 先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对 速度和加速度间关系的理解 譬如, 本题中物体在初始阶段, 尽管加速度在逐渐减小, 但由于 它与速度同向,所以速度仍继续增大2牛顿第二定律的瞬时性【例3】(200

9、1年上海高考题)如图(1)所示,一质量为 m的物体系于长度分别为 Li、 L2的两根细线上,Li的一端悬挂在天花板上,与竖直方向夹角为0 , L2水平拉直,物体处于平衡状态。现将 L2线剪断,求剪断瞬时物体的加速度。( 1)下面是某同学对该题的某种解法:解:设Li线上拉力为Ti, L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡。T1 cosmg,sinT2,解得T2 =mgta n0,剪断线的瞬间,T2突然消失,物体却在 T2反方向获得加速度,因为mgtan0 =ma所以加速度a=gtan 0,方向在T2反方向。你认为这个结果正确吗说明理由。(2)若将图(1 )中的细线Li改为长度相

10、同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a=gtan 0,你认为这个结果正确吗请说明 理由。解析:(1)这个结果是错误的。当L2被剪断的瞬间,因T2突然消失,而引起Li上的张力 发生突变,使物体的受力情况改变,瞬时加速度沿垂直 L1 斜向下方,为 a=gsin0。(2)这个结果是正确的。当 L2被剪断时,T2突然消失,而弹簧还来不及形变(变化要有 一个过程,不能突变),因而弹簧的弹力 Ti不变,它与重力的合力与 T2是一对平衡力,等值 反向,所以L2剪断时的瞬时加速度为 a=gtan 0 ,方向在T2的反方向上。点评:牛顿第二定律F合=ma反映了

11、物体的加速度 a跟它所受合外力的瞬时对应关系. 物 体受到外力作用, 同时产生了相应的加速度, 外力恒定不变, 物体的加速度也恒定不变; 外力 随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失3正交分解法【例 4】如图所示, 质量为 4 kg 的物体静止于水平面上, 物体与水平面间的动摩擦因数为 0.5,物体受到大小为20N,与水平方向成30。角斜向上的拉力 F作用时沿水平面做匀加速运 动,求物体的加速度是多大 ?(g 取 10 m/s2)解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F 沿两坐标轴方向分解,则两坐标轴上的合力分别为物体沿水平方

12、向加速运动, 设加速度为a,则x轴方向上的加速度 ax= a, y轴方向上物体ma, Fy may 0没有运动,故ay =0,由牛顿第二定律得 Fx max所以 F cos F ma, FN F si nGO又有滑动摩擦力FFn以上三式代入数据可解得物体的加速度a=0.58 m/s2点评:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直 角坐标系,利用正交分解法来解.4 合成法与分解法【例5】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37角,球和车厢相对静止,球的质量为1kg. (g = 10m/s2, sin37= 0.6, cos37=

13、 0.8)(1) 求车厢运动的加速度并说明车厢的运动情况.(2) 求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg和线的拉力Ft,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mgtan37由牛顿第二定律F合=ma可求得球的加速度为F合ag tan 377.5m/s2m加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动.(2)由图可得,线对球的拉力大小为mg 1 10cos370.8Ft

14、N=12.5 n点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.【例6】如图所示, m =4kg的小球挂在小车后壁上,细线与竖直方向成37角。求:(1)小车以a=g向右加速;(2) 小车以a=g向右减速时,细线对小球的拉力Fi和后壁对小球的压力 F2各多大解析:(1)向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F2向右,因此 G和Fi的合力一定水平向左,所以Fi的大小可以用平行四边形定则求出:Fi=50N,可见向右加速时 Fi的大小与a无关;F2可在水平方向上用牛顿第二定律列方程: F2-0.

15、75G =ma计算得F2=70N。可以看出F2将随a的增大而增大。(这种情况下用平行四边形 定则比用正交分解法简单。)(2)必须注意到:向右减速时,F2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此Fi的方向会改变。所以必须先求出这个临界值。当3时G和Fi的合力刚好等于 ma,所以a的临界值为a - g。当a=g时小球必将离开后壁。不4难看出,这时 Fi=2mg=56N, F2=0【例7】如图所示,在箱内倾角为a的固定光滑斜面上用平行于斜面的细线固定一质量为 m的木块。求:(i)箱以加速度a匀加速上升,(2)箱以加速度a向左匀加速运动时,线对木 块的拉力Fi

16、和斜面对箱的压力 F2各多大解:(i) a向上时,由于箱受的合外力竖直向上,重力竖直向下,所以Fi、F2的合力F必然竖直向上。可先求 F,再由Fi=Fsi n a和F2=Fcosa求解,得到: Fi=m (g+a) sin a, F2=m(g+a) cos a显然这种方法比正交分解法简单。(2) a向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。可选择 沿斜面方向和垂直于斜面方向进行正交分解,(同时正交分解 a),然后分别沿x、y轴列方程求 Fi、F2:Fi=m (gsin a -acos a ), F2=m ( gcos a +asin a )经比较可知,这样正交分解比按照水

17、平、竖直方向正交分解列方程和解方程都简单。点评:还应该注意到 Fi的表达式Fi=m (gsina -acos a )显示其有可能得负值,这意味着 绳对木块的力是推力,这是不可能的。这里又有一个临界值的问题:当向左的加速度a时Fi=m (gsin a-acosa )沿绳向斜上方;当 agtana时木块和斜面不再保持相对静止,而 是相对于斜面向上滑动,绳子松弛,拉力为零。5在动力学问题中的综合应用【例7】 如图所示,质量 m=4kg的物体与地面间的动摩擦因数为口 =0.5,在与水平成0=37。角的恒力F作用下,从静止起向右前进 ti=2.0s后撤去F,又经过t2=4.0s物体刚好停下。 求:F的大

18、小、最大速度 Vm、总位移S。解析:由运动学知识可知:前后两段匀变速直线运动的加速度a与时间t成反比,而第二段中口 mg=ma2,加速度 a2= 口 g=5m/s2,所以第一段中的加速度一定是ai=i0m/s2。再由方程可以按第二段求得:Vm=a2t2=20m/s vms 土 (ti t2)60 m2F cos (mg F sin ) maj可求得:F=54.5N第一段的末速度和第二段的初速度相等都是最大速度,又由于两段的平均速度和全过程的平均速度相等,所以有点评:需要引起注意的是:在撤去拉力F前后,物体受的摩擦力发生了改变。可见,在动力学问题中应用牛顿第二定律,正确的受力分析和运动分析是解题

19、的关键,求解加速度是解决问题的纽带,要牢牢地把握住这一解题的基本方法和基本思路。我本在下一专题将详细研究这一问题。三、针对训练1 下列关于力和运动关系的几种说法中,正确的是A .物体所受合外力的方向,就是物体运动的方向B .物体所受合外力不为零时,其速度不可能为零C. 物体所受合外力不为零,其加速度一定不为零D .合外力变小的,物体一定做减速运动2. 放在光滑水平面上的物体,在水平方向的两个平衡力作用下处于静止状态,若其中一 个力逐渐减小到零后,又恢复到原值,则该物体的A .速度先增大后减小B .速度一直增大,直到某个定值C.加速度先增大,后减小到零D 加速度一直增大到某个定值3. 下列对牛顿

20、第二定律的表达式F=ma及其变形公式的理解,正确的是A由F = ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比B .由m F可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比aC.由a 匚可知,物体的加速度与其所受合外力成正比,与其质量成反比mD .由m 匚可知,物体的质量可以通过测量它的加速度和它所受到的合外力而求得a4. 在牛顿第二定律的数学表达式F = kma中,有关比例系数 k的说法正确的是A .在任何情况下k都等于1B .因为k =1,所以k可有可无C. k的数值由质量、加速度和力的大小决定D. k的数值由质量、加速度和力的单位决定5. 对静止在光滑水平

21、面上的物体施加一水平拉力,当力刚开始作用的瞬间A .物体立即获得速度E. 物体立即获得加速度C.物体同时获得速度和加速度D .由于物体未来得及运动,所以速度和加速度都为零6. 质量为1kg的物体受到两个大小分别为 2N和2N的共点力作用,则物体的加速度大小 可能是A . 5 m/s2B. 3 m/s 2 C. 2 m/s 2 D. 0.5 m/s 22 F,则物体产生的加速7. 如图所示,质量为10kg的物体,在水平地面上向左运动.物体与水平面间的动摩擦因数为0.2.与此同时,物体受到一个水平向右的推力F = 20N的作用,则物体的加速度为(g取10 m/s2)A . 0B. 4 m/s2,水

22、平向右C. 2 m/s2,水平向右D . 2 m/s2,水平向左&质量为m的物体放在粗糙的水平面上,水平拉力F作用于物体上,物体产生的加速度为a,若作用在物体上的水平拉力变为A.小于aC.在a和2a之间B.等于aD.大于2a9.物体在力 F作用下做加速运动,当力;当F减小到0时,物体的加速度将变、最大、最小和零)等.F逐渐减小时,物体的加速度 ,速度,速度将.(填变大、变小、不mB=2mA, A、B 与地10.如图所示,物体 A、B用弹簧相连,面间的动摩擦因数相同,均为 口,在力F作用下,物体系统做匀速(以原来的方向为正运动,在力F撤去的瞬间,A的加速度为 , B的加速度为方向).11甲、乙两

23、物体的质量之比为5 : 3,所受外力大小之比为2 : 3,则甲、乙两物体加速度大小之比为.12.质量为8X 103 kg的汽车,以1.5 m/s2的加速度沿水平路面加速,阻力为 2.5X 103N, 那么汽车的牵引力为 N.4s内物体所受合外力的最大值是N.14.在质量为M的气球下面吊一质量为 m的物体匀速上升.某 时刻悬挂物体的绳子断了,若空气阻力不计,物体所受的浮力大小不计,求气球上升的加速度.参考答案:1.C2.BC 3.CD4.D5.B6.ABC8.D7.B附:9.变小、11.2 : 5增大、为零、不变12. 1.45 X 10413.4310. 0; 一2m214. gM难点解析一、

24、正确理解牛顿第二定律的瞬时性与矢量性对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力 F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所13.质量为1.0 kg的物体,其速度图像如图所示, N ;合外力方向与运动方向相反时,合外力大小为_以,物体运动的加速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论