下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题27.2.1相似三角形的判定第1课时教学目标:1 .知识与技能:(1) 了解相似三角形的概念;(2) 使学生掌握平行线分线段成比例的基本事实及其推论2 .过程与方法:让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.3 .情感态度价值观目标:培养学生的观察、动手探究、归纳总结的能力,感受相似三角形与相似多边形、相 似三角形与全等三角形、平行线分线段成比例基本事实及其推论的区别和联系,体验事 物之间特殊与一般的关系,并为下节的相似三角形判定的预备定理做准备教学重难点:重点:平行线分线段成比例基本事实及其推论.难点:探究平行线分线段成比例基本事实过程.教学过程一.复习
2、引入问1:相似多边形定义是什么?什么叫相似比?二.新课:探究新知1:相似三角形问2:最简单的相似多边形是相似几边形?类比相似多边形的定义,请你给相似三角形 下个定义?(三个角分别对应相等,三条边对应成比例的两个三角形相似)问3:结合图形,说说 在aabc与aabc中,如果我们想证明 aabc与aabc相 似,根据定义,我们需要哪些条件呢?ccb在 mbc 与 aa b c 中,ab a、如果/a=/ a , zb=z b , zc=z c,且 -ab- =-bc-=-ca-=k .ab b c c a我们就说aabc与aabc相似,记作 mbc s aa b c , k就是它们的相似比.、一
3、一. 1 ab,_问4:如果k = 一时,c是多少?此时称 aabc与&abc的相似比为多少?那2 ab,ab, 么 为多少?此时称 aa b c与aabc相似比为多少呢? ab1故:当 mbc与&abc的相似比为k时,mbc与&abc的相似比为一.k问5:如果k =1, aabc与aaqc有怎样的关系?几何语言:abc与mbc相似定义:. /a=/ a , zb=z b , /c=/ c,且ab bccaabbcca注意:类似于三角形全等,相似三角形的顶点也 一 、一 _ 一 反之如果aabc s aa b c ,对应则有 / a=/ a , /b=/b , /c=/ cbcb-ccaca一
4、 一一、 . abc与aabc相似的边角性质:.mbc s aa b c ./ a=z a , / b=/ b , / c=z c ,bcab bccaca还可以使用简便判定两个三角形全等时,除了可以验证它们所有的角和边分别相等外, 的判定方法(sss, sas, asa, aas)类似地,判定两个三角形相似时,是不是也存在简 便的判定方法呢?我们先来研究下面的问题。探究新知2:平行线分线段成比例基本事实:如图,任意画两条直线11, 12,再画三条与1112相交的平行线i3, l15分别量度o引导发现:1.上下对应成比例关系 记忆小技巧:.2.上全对应成比例关系.3.下全对应成比例关系.,、
5、ab13, 14, 15在11上截得的两条线段 ab, bc和在12,上截得的两条线段 de, ef的长度, bcde1相等吗?efab 一 dewr 门与相等吗?bc ef下下 上上工荃=全全 下下全全一=一);一=一(一=一)。上上 全问:结合图形说说:两条直线被三条平行线所截,你发现了什么比例线段之间的规律? 归纳:平行线分线段成比例的基本事实两条直线被三条(一组)所截,所得的线段的比(线段 ab端点除外),de/bc交ac于e,几何语言:13/ 14/ 15,ab _ debc-ec练习:如图,若 ad/be/fc , ab=3cm bc=5cm de=4cm 求 ef 的长?例题解析
6、例:在 abc中,d是边ab上任意一点求证:ad=aeo db ecc交边ar ac延长线于d交边ab ac反向延长线于变式1:若向下平移直线 de, 变式2:若向上平移直线 de, 归纳总结:e,问例题中的结论还成立吗?d e,问例题中的结论还成立吗?推论: 的三角形一边的直线截其它两边(或所得三.课堂训练1 .若 abc与4def的相似比是 5 : 3,则 def与 abc的相似比是多少?ab2 .如图,已知11 / 12/ 13,两条直线与这三条平行线分别交于点a, b,c和d,e,f且 bcde则而的值为(d.3.如图所示,若de/ bc,ae=3 cm,四.小结:谈谈你这节课的收获五.作业:ad .ac=5 cm,求 的值.db1 .如图,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙协议书签订时的法律审查
- 2024年黄沙石子供货合同范本
- 专业承包工地食堂合同书模板
- 合作经营生意合同协议
- 800字代办委托协议范本
- 房产按揭贷款借款协议示例
- 咖啡店外卖服务合同
- 2024年二手车购买协议格式
- 建筑项目监理合同样本
- 个人酒店承包经营协议书2024年
- 2024初中数学课程标准测试题(含答案)精华版
- 财务管理大学生的职业生涯规划
- 五年级我学会了什么的作文500字
- 农贸市场规划设计方案
- 中医日间病房建设方案
- 广东工业大学技术创新方法TRIZ理论及应用课程报告
- 《专利及专利申请》课件
- 2024年美白护肤品项目营销策划方案
- 中国儿童注意缺陷多动障碍(ADHD)防治指南
- 行政事业单位全面实施预算绩效管理的思路和路径及其评价方法
- 防范寄递安全风险知识讲座
评论
0/150
提交评论