现代控制理论试题详细答案_第1页
现代控制理论试题详细答案_第2页
现代控制理论试题详细答案_第3页
现代控制理论试题详细答案_第4页
现代控制理论试题详细答案_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用文档 现代控制理论试题B卷及答案 210?系统1 ,一、能控的状态变量个数是?x?u,yx01xcvcvx?210? ? 能观测的状态变量个数是。 cvcvx 2试从高阶微分方程求得系统的状态方程和输出方u?5y?8y?y3 程(4分/个) 解 1 能控的状态变量个数是2,能观测的状态变量个数是1。状 态变量个数是2。.(4分) 2选取状态变量,可得 .yx?yx?y?x231 (1分) x?x21 x?x32 .(1分) u?5?8x?3xx313 x?y1写成 0100? 1分).(. 001x?x0?u? ?50?3?8? ? .(1分) x010?y二、1给出线性定常系统能控的定义

2、。)kCx(?y()?Bu(k),k)(?x(k1)?Axk 分)(3021?,判定该系统是否完2已知系统x011y00x,2?x ? ?3?00?全能观?(5分) 标准文案实用文档 解 1答:若存在控制向量序列,时系统从第1)?N1),u(k(u(k),uk?步的状态开始,在第步达到零状态,即,其中是大于 )x(k0)?x(NNNk0的有限数,那么就称此系统在第步上是能控的。若对每一个,系kk统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。.(3分) 2. 210? . ?10020?102?3CA?30?0?(1分) 210? (1分).20049230? 02?CA?3?00

3、?C011? 分).(1.CA02?3? ?U?O2?94CA0?,所以该系统不完全能观.(2n?2rankUO分) 三、已知系统1、2的传递函数分别为 2?1ss?1 ?)g(s?g(s), 2122s?3s?2s?3s?2求两系统串联后系统的最小实现。(8分) 解 (s?1)(s?1)s?1s?1 .?(gs)?)(g)(gs?s 112(s?1)(s?2)(s?1)(s?2)s?4(5分) 最小实现为 标准文案实用文档 010? .xy?01x?x?u,?140 ?(3分) 1?21?四、将下列状态方程化为能控标准形。(8分) u?xx? ?314?1?1?(1分) 解 .?bAbU?C

4、17?17? 88?1?.(1分) ?U?11C? 88?11?.(1分) ?P? 188?13?.(1分) ?P? 244?11?P? 88 1?P?31P?2 44?31? 84.(1分) 1?8P?11? 84?01?.(1分) ?1?PAPA?C?105?11?10? 88.(1分) ? ?bPb?31C11? 44?010?.x?u x? ?1105?.(1分) ?12?五、利用李亚普诺夫第一方法判定系统(8分) 的稳定性。x?x?1?1 ?解 标准文案 实用文档 ?2?1?.2? 3?I?A?2?11? .(3分). 分).(3特征根. ?i?2?12(.均具有负实部,系统在原点附

5、近一致渐近稳定. 分)11?是否为大范围六、利用李雅普诺夫第二方法判断系统x?x?3?2 ? 8分)渐近稳定: ( 解pp? 1211?P?pp?2212 .1分).(TI?A?P?PA1?4p?2p?1211? 1分).(.0p?pp?4?2?221211?1?6p?2p?12227?p411?3 分).(1.?p?822?5?p?8?1257?pp?84?1.( .1211?P?pp35?221288? 分)57?pp?17784? 1分).(12110?det?0 det?P? 11?pp35644?221288?分)(正定,因此系统在原点处是大范围渐近稳定的 .1P 标准文案实用文档

6、2s?11? s?1)(s?2)(s 七、已知系统传递函数阵为试?)G(s3?12s? 21s?s1)(s?2)s(?判断该系统能否用状态反馈和输入变换实现解耦控制。(6分) 解: - (2分) 0?d0?d21 ?, - (2 分)0E?011E11 10? 非奇异,可实现解耦控制。- (2E?01?分) pp? 1211?P?pp?2212八、给定系统的状态空间表达式为?1?2?31?,设计一个具有特征值为-1, x00yu,x?0?11x?10? ?1?101?-1,-1的全维状态观测器。(8分) 解:方法1 ?12?E3 1 - 1分 ?1?1I?A?EC?0E 2?E?1?13232

7、?EE?E?3?3E?(?2?1)E?32?31?3 3213223?E?E4E6?E?3)?(?E(2?E6)?132223- 2分 标准文案实用文档 又因为 - 1分 23*?1)?(3?3f?列方程 6?E?4E?E?1123 - 2分 3E?6?2E?32E?3?32 - 1分 30,E?E?2,k?321观测器为 ?10?31?2? - 1分 ?01100yux?x? ?3?1110?2 方法? 312? 23? 6?1?3?I?A06?1?1?10? - 1分 2*3?1?3f?()?3? 分-2 0?3,EE?5,E312 分-11aa?12? T2TTTT?0ACA(a)?QC

8、C1?1?010? 分-2 1分3?2,?E?k?E?0,312 观测器为 标准文案实用文档 ?10?31?2? - 1分 ?01100xu?x?y? ?3110?1?100?AO10? ,.九 解 1?0?01A?AA?1,?21AO12?2210?(1分) At?0e1 .(1AttAt?ee?e?1Ate02?分) 1?01?1s?0 ?1?s.(1分) 1?A)(sI?21112?1s? s?s?2s12?t?0e?1?.(1分)tA1?ALsIe?2?2t2t2teee?t?0e0?1?.(2分) 1t?At0?e0sI?L?eA?t22ttee?0e?At(0)xe(xt)? tt

9、?00e1e?.t000?e?0?tttt222e0?ee1e?(2分) 现代控制理论复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打,反之打。 标准文案实用文档 ( )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。 ( )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 A( ),其Lyapunov意义下的渐近稳定性和矩阵4. 对系统?x?Ax的特征值都具有负实部是一致的。 ( )5. 根据线性二次型最优控制问题设计的最优控

10、制系统一定是渐近稳定的。 s?3 试求(二、15分)考虑由下式确定的系统: ?)G(s 2s?3s?2其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 xx010?11?u?xx13?2?22 x?11?3y?x?2能观测标准形为 xx320?11?u?xx1?31?22 x?11y?0?x?2对角标准形为 标准文案实用文档 xx1?10?11?u?xx120?22 x?11y?2?x?2分)在线性控制系统的分析和设计中,系统的状态转移矩阵10三、( 起着很重要的作用。对系统01? x?x?3?2? 求其状态转移矩阵。 1。解:解法A它们

11、是不相的两个特征值是容易得到系统状态矩阵,?2?,?121AA对应于特征值同的,故系统的矩阵矩阵可以对角化。?2?1,?21 的特征向量是11? ?,?2121?1112?1? , 则取变换矩阵 1?TT?211?1?2?1?01? 因此, 1?D?TAT?20? 从而,tt?1121?00ee?1At?Te?T?t?2t2?111?2?e00e? t?t2?t?2?t?eee?e2?t?2?t?tt2ee?2?e?2e2? 2。拉普拉斯方法解法 由于 标准文案实用文档 ?1s?1s?31?11?1?adj(sI?sI?A)A)?(? 3?2s?2s2?3)sI?A)s(sdet(?13s?

12、? 1112? ? )2)(s?2)(s?1)(s?1(s?21s?s?1s?2s?22?2?2s?1? ?2s2?1s?s?1)(s?2)(s1)(s?2)?s?1s?(?t?2?t?t?2t?ee?2ee? 故1?At1?)A?L(sI?(t)?e?tt2?t2?t?e?2e?2e2?e? 哈密尔顿方法解法3。凯莱- 将状态转移矩阵写成 AtAt)I?ae(?a(t)10 ,故-1和-2特统矩阵的征值是系 tt?2?)tt)?2e)(?at)?a(tea(?a1100 解以上线性方程组,可得t?t?t?2t2ea(t?(at)e?2?ee)?01t?t?2t2t?e?ee2e? 因此, A

13、t?At)(I()t?e?at)?a?(?10t?t2t?t?2e?ee2?2?2e?分)已知对象的状态空间模型(四、是完全能,15?x,?AxCxy?Bu观的,请画出观测器设计的框图,并据此给出观测器方程,观测器设 计方法。 观测器设计的框图:解 观测器方程:?)CxyLBux?Ax?(? LyxLC?A?()Bu? 标准文案实用文档 Lnp维的待定观测器增益矩阵。是一个 是观测器的维状态,其中:x观测器设计方法: 由于 TTTT?)?C?detLI?det?(A?LC)?(I?(A?LC)AdetIL,使得因此,可以利用极点配置的方法来确定矩阵具有给TTTL?AC定的观测器极点。具体的方法

14、有:直接法、变换法、爱克曼公式。 五、(15分)对于一个连续时间线性定常系统,试叙述Lyapunov稳定性定理,并举一个二阶系统例子说明该定理的应用。 解 连续时间线性时不变系统的李雅普诺夫稳定性定理: 在平衡点处渐近稳定的充分必要条件是:线性时不变系统?0?xx?AxeQ,李雅普诺夫矩阵方程对任意给定的对称正定矩阵有TQ?PAA?PP。 惟一的对称正定解QI。在具体问题分析中,可以选取 = xx10?考虑二阶线性时不变系统: 11?xx?1?1?22原点是系统的惟一平衡状态。求解以下的李雅普诺夫矩阵方程 TI?APAP?pp? 其中的未知对称矩阵 1211P?pp?2212AP的表示式代入李

15、雅普诺夫方程中,可得和将矩阵 pppp01?01?10? 12111112?pppp?1?1?110?1?22121222进一步可得联立方程组 ?2p?112 0p?pp2211122p?2p?12212 标准文案实用文档 从上式解出、和,从而可得矩阵 ppp221112pp3/21/2? 1211?P?pp1/21?221235 根据塞尔维斯特方法,可得 ?0?detP?0? 1242P是正定的。因此,系统在原点处的平衡状态是大范围渐近稳故矩阵定的。 六、(10分)已知被控系统的传递函数是 10 ?)G(s (s?1)(s?2)试设计一个状态反馈控制律,使得闭环系统的极点为-1 j。 解 系

16、统的状态空间模型是 100?xx?u? 3?12?x100y? 将控制器 代入到所考虑系统的状态方程中,得到闭环xku?k10系统状态方程 01? xx?k?3?2?k?10该闭环系统的特征方程是 2?)?k?(?(3k)det()I?A?201c期望的闭环特征方程是 2?2?j)?2?(?1?j)(1?通过 22?2?)?(2?k)2?(3k01可得 2k?223?k?01 从上式可解出 0?k?1k?01x? 因此,要设计的极点配置状态反馈控制器是110u?x?2 标准文案实用文档 七、(10分)证明:等价的状态空间模型具有相同的能控性。 证明 对状态空间模型 ?Ax?Bux y?Cx?D

17、u它的等价状态空间模型具有形式 ? ?Ax?Bux uDx?y?C 其中: 11? D?CTDA?TAT?B?TBC T是任意的非奇异变换矩阵。利用以上的关系式,等价状态空间模型的能控性矩阵是 n?1 BAB?BAB?A,?c?1?1n?1TB(TB?TATTAT)TB? 1?nABTBAB?B,?A?TcT是非奇异的,故矩阵,和由于矩阵具有相同的秩,从 ,B?A,B?Acc而等价的状态空间模型具有相同的能控性。 八、(15分)在极点配置是控制系统设计中的一种有效方法,请问这种方法能改善控制系统的哪些性能?对系统性能是否也可能产生不利影响?如何解决? 解: 极点配置可以改善系统的动态性能,如调

18、节时间、峰值时间、振荡幅度。 极点配置也有一些负面的影响,特别的,可能使得一个开环无静差的系统通过极点配置后,其闭环系统产生稳态误差,从而使得系统的稳态性能变差。 标准文案实用文档 改善的方法:针对阶跃输入的系统,通过引进一个积分器来消除跟踪 误差,其结构图是 构建增广系统,通过极点配置方法来设计增广系统的状态反馈控制器,从而使得闭环系统不仅保持期望的动态性能,而且避免了稳态误差的出现。 现代控制理论复习题2 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打,反之打。 ( )1. 对一个系统,只能选取一组状态变量; ( )2. 由状态转移矩阵可以决定系统状

19、态方程的状态矩阵,进而决定系统的动态特性; ( )3. 若传递函数存在零极相消,则对应的状1?B?A)G(s?C(sI态空间模型描述的系统是不能控不能观的; ( )4. 若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; ( )5. 状态反馈不改变系统的能控性。 二、(20分)已知系统的传递函数为 2s?5 ?)G(s )5?s)(3?s( 标准文案实用文档 (1) 采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图; (2) 采用并联分解方式,给出其状态空间模型,并画出对应的状态变量图。 Gs)写成以下形式:1)将 (答:(12s?5 ?G(s)? s?3s?

20、512s?5和串连,它们的状态空间模型分别为: 这相当于两个环节 5?3ss?5x?uxx3?x?u? 11122和 ?u?5x?yxy?1211由于,故可得给定传递函数的状态空间实现是: u?y11 将其写成矩阵向量的形式,可得: 对应的状态变量图为: 串连分解所得状态空间实现的状态变量图 Gs)写成以下形式: )将(2 ( 标准文案实用文档 0.52.5和它可以看成是两个环节的并联,每一个环节的状态空间? 3s?5s? 模型分别为: 和 由此可得原传递函数的状态空间实现: 进一步写成状态向量的形式,可得: 对应的状态变量图为: 并连分解所得状态空间实现的状态变量图分)试介绍求解线性定常系统

21、状态转移矩阵的方法,并以一20三、( 种方法和一个数值例子为例,求解线性定常系统的状态转移矩阵; 答:求解状态转移矩阵的方法有: 标准文案实用文档 方法一 直接计算法: 根据状态转移矩阵的定义 A。 来直接计算,只适合一些特殊矩阵方法二 通过线性变换计算状态转移矩阵,设法通过线性变换,将矩A 变换成对角矩阵或约当矩阵,进而利用方法得到要求的状态转移阵矩阵。 方法三 拉普拉斯变换法:。 11?At?sI?e?L)A(方法四 凯莱-哈密尔顿方法 根据凯莱-哈密尔顿定理和,可导出具有以下形式: Ate t An有的标量函数。根据矩阵其中的均是时间 ?)t(),t(),(t?1?02n个不同特征值和有

22、重特征值的情况,可以分别确定这些系数。 举例:利用拉普拉斯变换法计算由状态矩阵 所确定的自治系统的状态转移矩阵。 由于 故 标准文案实用文档 分)解释状态能观性的含义,给出能观性的判别条件,并举(10四、 例说明之。状态能观性反映了通过系统的输出对系统状答:状态能观性的含义:态的识别能力,对一个零输入的系统,若它是能观的,则可以通过一 段时间内的测量输出来估计之前某个时刻的系统状态。 状态能观的判别方法:n 阶系统对于 C?CA?若其能观性矩阵 1. 列满秩,则系统完全能观?o?1n?CA? 若系统的能观格拉姆矩阵2. 非奇异,则系统完全能观。 举例: 对于系统 其能观性矩阵 标准文案实用文档

23、 ,即是列满秩的,故系统是能观的。的秩为2 分)对一个由状态空间模型描述的系统,试回答:五、(20 能够通过状态反馈实现任意极点配置的条件是什么?) (1 简单叙述两种极点配置状态反馈控制器的设计方法;) (2 试通过数值例子说明极点配置状态反馈控制器的设计。(3)能够通过状态反馈实现任意极点配置的条件:系统是能控答:(1 的。)极点配置状态反馈控制器的设计方法有直接法、变换法、爱克(2 曼公式法。 直接法 验证系统的能控性,若系统能控,则进行以下设计。BKAu Kx,闭环系统的特=?,相应的闭环矩阵是设状态反馈控制器 征多项式为 由期望极点 可得期望的闭环特征多项式?,?n1 可以列出一组以

24、控制器参数为变量通过让以上两个特征多项式相等,由这组线性方程可以求出极点配置状态反馈的增益矩的线性方程组,K 阵。 变换法 标准文案实用文档 验证系统的能控性,若系统能控,则进行以下设计。 将状态空间模型转化为能控标准型,相应的状态变换矩阵 设期望的特征多项式为 而能控标准型的特征多项式为 所以,状态反馈控制器增益矩阵是 (3) 采用直接法来说明极点配置状态反馈控制器的设计 考虑以下系统 设计一个状态反馈控制器,使闭环系统极点为2?和?3。 该状态空间模型的能控性矩阵为 该能控性矩阵是行满秩的,所以系统能控。 设状态反馈控制器 将其代入系统状态方程中,得到闭环系统状态方程 其特征多项式为 标准

25、文案实用文档 ,可得闭环特征多项式? 2和3由期望的闭环极点? 通过 可得 由此方程组得到 因此,要设计的极点配置状态反馈控制器 分)给定系统状态空间模型20 六、(?xAx? 试问如何判断该系统在李雅普诺夫意义下的稳定性?1() 试通过一个例子说明您给出的方法;(2) 给出李雅普诺夫稳定性定理的物理解释。(3) 答:根据线给定的系统状态空间模型(1)是一个线性时不变系统,?x?Ax该系统渐近稳定的充分必要性时不变系统稳定性的李雅普诺夫定理,Q有一个条件是:对任意给定的对称正定矩阵,矩阵方程TQ?PA?APP,若能得到对称正定解矩阵。因此,通过求解矩阵方程TQ?P?PA?APP,则系统是稳定的

26、;一个对称正定解矩阵,若得不到对称正定解矩阵 标准文案实用文档 Q I。= 则系统是不稳定的。一般的,可以选取(2)举例:考虑由以下状态方程描述的二阶线性时不变系统: 原点是该系统的惟一平衡状态。求解李雅普诺夫方程:,TQ?P?APA其中的未知矩阵 AP的表示式代入李雅普诺夫方程中,可得 和将矩阵 Q I,则从以上矩阵方程可得:=2为了计算简单,选取 求解该线性方程组,可得: 即 P是正定的。因此该系统是渐近稳定的。判断可得矩阵 (3)李雅普诺夫稳定性定理的物理意义:针对一个动态系统和确定的平衡状态,通过分析该系统运动过程中能量的变化来判断系统的稳定性。具体地说,就是构造一个反映系统运动过程中

27、能量变化的虚拟能量函数,沿系统的运动轨迹,通过该能量函数关于时间导数的取值 标准文案实用文档 来判断系统能量在运动过程中是否减少,若该导数值都是小于零的,则表明系统能量随着时间的增长是减少的,直至消耗殆尽,表明在系统运动上,就是系统运动逐步趋向平缓,直至在平衡状态处稳定下来,这就是李雅普诺夫意义下的稳定性 现代控制理论复习题3 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打,反之打。 ( )1. 具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统; ( )2. 要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点

28、应该比系统极点快10倍以上; ( )3. 若传递函数存在零极相消,则对应状态1?B?(sIA)G(s)?C空间模型描述的系统是不能控的; ( )4. 若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的; ( )5. 若线性二次型最优控制问题有解,则可以得到一个稳定化状态反馈控制器。 二、(20分)(1)如何由一个传递函数来给出其对应的状态空间模型,试简述其解决思路? 2s?5的两种状态空间实现。)给出一个二阶传递函数 2(?Gs)( (s?3)(s?5)解:(1)单输入单输出线性时不变系统传递函数的一般形式是 标准文案实用文档 ,则通过长除法,传递函数总可以转化成若0?b)G(sn 将

29、 分解成等效的两个特殊环节的串联: 可得一个状态空间实现 n阶的传递函数分解成若干低阶传递函数的其思想是将一个串联法 最后利用串联关乘积,然后写出这些低阶传递函数的状态空间实现, 系,写出原来系统的状态空间模型。其的思路是把一个复杂的传递函数分解成若干低阶传递函数 并联法最后根据并联然后对每个低阶传递函数确定其状态空间实现,的和, 关系给出原来传递函数的状态空间实现。 重新写成下述形式:2()方法一:将)sG( 标准文案实用文档 每一个环节的状态空间模型分别为: 又因为, 所以 u?y11 因此,若采用串联分解方式,则系统的状态空间模型为: 方法二:将重新写成下述形式: )sG( 每一个环节的

30、状态空间模型分别为: 又由于 因此,若采用并联分解方式,则系统的状态空间模型为: 方法三:将重新写成下述形式: )(Gs 标准文案实用文档 则系统的状态空间模型为: 分,由一个传递函数转换为状态空间模型思)10评分标准:问题(1510分,两种状态空间实现方法各分;问题(2)路清晰,方法正确10 分。 )试问状态转移矩阵的意义是什么?20分)(1三、( )状态转移矩阵是否包含了对应自治系统的全部信息?(2 )介绍两种求解线性定常系统状态转移矩阵的方法;(301? 的状态转移矩阵。(4)计算系统?x?32?)状态转移矩阵的意义是决定状态沿着轨线从初始状态转移解:(1txt的作( 0)到下一个状态的

31、规律,即初始状态,0在状态转移矩阵xtxttt ?的状态0后转移到了时刻用下,0时刻的初始状态经过时间0 t (。) )状态转移矩阵包含了对应自治系统的全部信息;对于自治系统(2 直接计算法。哈密尔顿法、拉普拉斯变换法、凯莱-线性变换法、)(3 直接计算法方法一 根据定义, 标准文案实用文档 故可以通过计算该矩阵我们已经知道上式中的矩阵级数总是收敛的, 级数的和来得到所要求的状态转移矩阵。A是一个可对角化的矩阵,即存在一个如果矩阵方法二 线性变换法 T ,使得非奇异矩阵 则 拉普拉斯变换法方法三 哈密尔顿法凯莱- 方法四 解一个线性方程组 n 互2, ,其系数矩阵的行列式是著名的范德蒙行列式,

32、当1,t0(), 从而从方程组可得惟一解不相同时,行列式的值不为零,ttn )1 (), ,?1 ( 标准文案实用文档 可得状态转移矩阵。 4)方法一:线性变换法,(A,它们的两个特征值是 容易得到系统状态矩阵?2?1,21AA对应与特征值可以对角化。矩阵是不相同的,故系统的矩阵 的特征向量是?2?1,21 取变换矩阵 因此, 从而, 方法二:拉普拉斯变换法,由于 标准文案实用文档 故 哈密尔顿法方法二:凯莱- 将状态转移矩阵写成 ,故和系统矩阵的特征值是-1-2 解以上线性方程组,可得 标准文案实用文档 因此, 评分标准:每个问题5分。问题(1)状态转移矩阵的意义叙述完整5分;问题(2)判断

33、正确5分;问题(3)给出两种求解线性定常系统状态转移矩阵的方法5分;问题(3)方法和结果正确5分。 四、(20分)(1)解释系统状态能控性的含义; (2)给出能控性的判别条件,并通过一个例子来说明该判别条件的应用; (3)若一个系统是能控的,则可以在任意短时间内将初始状态转移到任意指定的状态,这一控制效果在实际中能实现吗?为什么? 解:(1)对一个能控的状态,总存在一个控制律,使得在该控制律作用下,系统从此状态出发,经有限时间后转移到零状态。 (2)通过检验能控性判别矩阵n?1是否行满秩来判别线ABABB?性时不变系统的能控性。若能控性判别矩阵是行满秩的,则系统是能控的。 试判别由以下状态方程

34、描述的系统的能控性: 系统的能控性判别矩阵 标准文案实用文档 由于 BcA ,即矩阵不是满秩的,该系统不是状态完全能控的。)若一个系统是能控的,则可以在任意短时间内将初始状态转移(3T越小,则控到任意指定的状态,这一控制效果在实际中难以实现,这要求执行器的调从而导致控制信号的幅值很大,制律的参数越大,从而使得在有限时间内完成这一控制作用所需要消耗节幅度要很大,(如执行器的调节幅度总是有限的的能量也很大。由于在实际过程中, 阀门的开度等),能量供应也是有限制的。能(2) 分;问题)问题(1系统状态能控性的含义叙述完整6评分标准:分,原因分析正33)判断正确控性的判别条件4分,举例3分;问题( 4

35、分。确)能够通过状态反馈实现任意极点配置的条件是什分)(1五、(20 么? 2)已知被控对象的状态空间模型为(010?u?xx? 413?x32y? 。和4?5?设计状态反馈控制器,使得闭环极点为)极点配置是否会影响系统的稳态性能?若会的话,如何克服?(3 试简单叙述之? 标准文案实用文档 解:(1)能够通过状态反馈实现任意极点配置的条件是系统状态能控。 (2) 由于给出的状态空间模型是能控标准形,因此,系统是能控的。根据所期望的闭环极点是?4和?5,可得期望的闭环特征多项式是 因此,所要设计的状态反馈增益矩阵是 相应的闭环系统状态矩阵是 闭环传递函数是 评分标准:问题(1)给出通过状态反馈实

36、现任意极点配置的条件6分;问题(2)状态反馈控制器设计方法正确7分;问题(3)判断正确3分,叙述克服方法4分。 六、(10分)(1) 叙述线性时不变系统的李雅普诺夫稳定性定理; ?11?利用李雅普诺夫稳定性定理判断系统 (2)的稳定性。 xx?0?1?解:(1)连续时间线性时不变系统的李雅普诺夫稳定性定理;线性在平衡点处渐近稳定的充分必要条件是:时不变系统对任?0x?x?AxeQP,使得矩阵方程,存在一个对称正定矩阵 意给定的对称正定矩阵 成立。 TQPAAP? 标准文案实用文档 离散时间线性时不变系统的李雅普诺夫稳定性定理;线性时不变系统对任意给在平衡点处渐近稳定的充分必要条件是:0?x)k

37、?Ax(kx(?1)eQ,矩阵方程 定的对称正定矩阵TQ?PA?PAP。存在对称正定解矩阵 (2)原点是系统的惟一平衡状态。求解以下的李雅普诺夫方程 TI?PAA?P其中的未知对称矩阵 AP的表示式代入李雅普诺夫方程中,可得和将矩阵 进一步将以上矩阵方程展开,可得联立方程组 ppp22和、 11,从而可12应用线性方程组的求解方法,可从上式解出P: 得矩阵 根据矩阵正定性判别的塞尔维斯特方法,可得 标准文案实用文档 P是正定的。因此,系统在原点处的平衡状态是大范围渐近稳故矩阵 定的。)完整叙述线性时不变系统的李雅普诺夫稳定性1评分标准:问题( 分。)稳定性判断方法和结果正确5分;问题(定理52

38、 4现代控制理论复习题分)试判断以下结论的正确性,若结论是正确110分,每小题一、( 的,则在其左边的括号里打,反之打。 相比于经典控制理论,现代控制理论的一个显著优点是)1. ( 可以用时域法直接进行系统的分析和设计。传递函数的状态空间实现不唯一的一个主要原因是状态)2. ( 变量选取不唯一。状态变量是用于完全描述系统动态行为的一组变量,因3. )( 此都是具有物理意义。输出变量是状态变量的部分信息,因此一个系统状态能) 4. ( 控意味着系统输出能控。 等价的状态空间模型具有相同的传递函数。 )5. ( 6. 互为对偶的状态空间模型具有相同的能控性。 ( )一个系统的平衡状态可能有多个,因

39、此系统的李雅普诺)7. ( 夫稳定性与系统受扰前所处的平衡位置无关。 标准文案实用文档 ( )8. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。 ( )9. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。 ( )10. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。 二、(15分)建立一个合理的系统模型是进行系统分析和设计的基础。已知一单输入单输出线性定常系统的微分方程为: ?y)u(t(t)?8u(y)?4)(t?3yt)?ut()?6t((1)采用串联分解方式,给出其状态

40、空间模型,并画出对应的状态变量图;(7分3分) n阶微分方程建试简述由一个系统的)(2归纳总结上述的实现过程,立系统状态空间模型的思路。(5分) 解:(1)方法一: 由微分方程可得 令 每一个环节的状态空间模型分别为: 标准文案实用文档 uy 所以,又因为1= 1 因此,采用串联分解方式可得系统的状态空间模型为: 对应的状态变量图为: 方法二: 由微分方程可得 每一个环节的状态空间模型分别为: uy 所以,又因为1=1 标准文案实用文档 因此,采用串联分解方式可得系统的状态空间模型为: 对应的状态变量图为 (2)单输入单输出线性时不变系统传递函数的一般形式是 bn Gs)总可以转化成( 若 0

41、,则通过长除法,传递函数 csas)分解成若干低阶(1阶)/()将传递函数传递函数的乘积,(然后根据能控标准型或能观标准型写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。 三、(10分)系统的状态转移矩阵不仅包含了对应自治系统的全部信息,而且在线性控制系统的分析、设计中具有重要的作用。已知系统的状态转移矩阵如下: ?t?2t?t?2t?e?e?2e2?e2 ?)(?t?tt?2t2t?ee4?e4e2?(1)试给出对应自治系统的全部信息;(5分) 标准文案实用文档 (2)试列举状态转移矩阵的基本性质,并简述其意义。(5分) A描述,可由状态转)一个自治系统的全

42、部信息由其状态矩阵解:(1tA。 移矩阵)(确定一线性定常系统的状态矩阵t?,满足对任意的,而 ?)(t?(t)?A t IA ? ,并利用,则可得状态矩阵(0)=取 对等式=0?)(t?(t)A? (2)状态转移矩阵的基本性质: ? ? ,包含对应系统自由运动的全部信息;?(0)?I,?(t)?A?t)tststs)(和(,满足()+)= ,即利用状态转移矩 ?对任意的txt)阵可以从任意指定的初始时刻(的状态出发,以确定任意时00txt);(刻 处的状态-1ttt)满足,对? 任意的(即可以由当前的状态信息确定,(-)= 以前的状态信息。 分)实际被控系统通常是连续时间系统,但计算机控制却

43、是(20四、一种基于离散模型的控制,因此一种方法是对连续时间系统做离散 化。那么请问)一个能控能观的连续时间系统,其离散化后的状态空间模型是1( 分)否仍然保持能控能观性?(2 标准文案实用文档 011? 说明你)以如下线性定常系统为例: (2?x0?1?xuyx?010?的理由以支持你的观点。(10分) ukT)x(01=)令采样周期/2,初始状态),使得(2)为,求((3?1?x(0)1?2中离散化状态空间模型在第2个采样时刻转移到原点。(8分) 解:(1)不一定。 (2)连续系统的状态空间模型是能控标准形,故系统是能控的。将T,系统的状态转移矩阵为 状态方程离散化,设采样周期为 T可得到

44、离散化状态方程,此 根据,?AAT?d)T?e(,T?e)(GT?()H0 时 因此,离散化状态空间模型为 则离散化系统的能控性矩阵为 标准文案实用文档 T TTkk=0,1,2, (=2sin),即 = 时,离散化系统是所以,当sin2Tkk=0,1,2 (不能控的;当)时,离散化系统是能控的。同理, 离散化系统的能观性矩阵为 TTkk=0,1,2,) (所以,sin时,离散化系统是不能观的;=0,即 = Tkk=0,1,2 (当)时,离散化系统是能观的。因此,一个能控能观的连续时间系统,其离散化后的状态空间模型不一定仍然是能控能T的选择。 观的,主要取决与采样周期T=/2时,离散化状态空间

45、模型为(3)当采样周期 可得 将式(a)代入式(b)得 即 整理可得 五、(10分)证明:状态反馈不改变被控系统的能控性。 标准文案实用文档 证明一:采用能控性定义证明,具体见教材P125. ABCD),则状态反馈后得到闭环系统, , 证明二:考虑被控系统(, SK,其状态空间模型为 S0的能控性矩阵为 开环系统 SK的能控性矩阵为 闭环系统 由于 以此类推,总可以写成的线性组合。因此,1?mmmBAB,?BK)BBA,B,A(AU,使得存在一个适当非奇异的矩阵 n个线性无关的列向量,则由此可得:若,即有n)?rank(?A,Bcn个线性无关的列向量,故也有,n)?BA(rank?(?BKBB

46、KA(?),),ckck命题得证。 六、(20分)双足直立机器人可以近似为一个倒立摆装置,如图所示。假设倒立摆系统的一个平衡点线性化状态空间模型如下: 标准文案实用文档 ?其中,状态变量yT是摆杆的偏移,是小车的位移,?yyx?u 是作用在小车上的动力。试回答角,)双足直立机器人在行走过程中被人推了一把而偏离垂直面,那(1请问双足直立机器人在该扰动推力消失后还能回么根据倒立摆原理, 分)到垂直面位置吗?(2)如果不能,那么请你从控制学的角度,给出两种能够使双足直2( 分)立机器人在扰动推力消失后回到垂直面位置的方法。(4)请结合倒立摆模型,简单叙述双足直立机器人能控性的含义。3( 4分)()在

47、状态反馈控制器设计中,需要用到系统的所有状态信息,但(4y,那么你根据倒立摆原理,可测量的状态信息只有水平移动的位移有什么方法可以实现这个状态反馈控制器的设计?你所用方法的条给出你使用方法的实现件是什么?依据是什么?请结合倒立摆模型, 10过程。(分) )不能,因为倒立摆是一个开环不稳定系统;1答:()对于给定的倒立摆模型,是一线性时不变系统,因此可以用如2(即稳定下方法使双足直立机器人在扰动推力消失后回到垂直面位置极点配置方法;基于李雅普诺夫稳定性理论的直接化控制器设计): 标准文案实用文档 设计法;线性二次型最优控制器设计方法。 (3)当双足直立机器人由于受初始扰动而稍稍偏离垂直面位置时,

48、总可以通过对其施加一个适当的外力,使得将它推回到垂直面位置(将非零的初始状态转移到零状态)。 (4)如果被控系统是状态能观的,那么通过设计(降维)状态观测器将不可测量状态变量观测输出,再应用线性定常系统的分离性原理,实现状态反馈控制器设计。结合倒立摆模型,则检验上述状态空间模型的能观性;系统完全能观,则对系统设计状态观测器(或对不?设计降维状态观测器)和;可测量子系统应用线性定常系统的?xy,u Kxx替换为观测状态从-= 中的状态分离性原理,将状态反馈控制器实现基于状态观测器的状态反馈控制器设计。 使用方法的条件是:系统完全能观或不可观子系统是渐进稳定的; 使用方法的依据是:线性定常系统的分离性原理。 七、(15分)考虑线性定常系统和性能指标如下: 010? 22?tru?d(y)?y?1xx?u0xJ?110-0?r0为性能指标可调参数。试回答其中实数 rJ最小化的最优状态反馈控制固定时,求使得性能指标(1)当参数器。(10分) r增大时,分析闭环系统性能的变化。(5分) (2)当参数J等价为 解:(1)系统性能指标 令正定对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论