AP微积分-APCalculus公式大全-217_第1页
AP微积分-APCalculus公式大全-217_第2页
AP微积分-APCalculus公式大全-217_第3页
AP微积分-APCalculus公式大全-217_第4页
AP微积分-APCalculus公式大全-217_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、AP Calculus BCI. LimitL ImportNnt limitslim.TT()lim.TTOCsinxx=1、limx-xLHopihds Rulesin ax lim5 bx洛必达法则(#/0,hn m n/0 8 / 0X /O0)oOGiven two differentiable functions f (x) and g(x),lim f(x) = lim g(x) = 0 .thenX-X7A-W7limZ = limZV25 g(x) 5 gG)hmf(x) = limg(x) = 00 .thenX-XT.YTdfWII. Derivative1. Basic

2、 Formulas(C)r = 0 (C is a constant)(xn)f = nxn(exy = ex. (axY = ax Inn (a O.a * 1)(In# = -: (log& xY = i (a 0,“ 工 1) xxma(sill x= cosx(cosx)*= -sinx(tan x/= sec2 x(cot)r= -esc2 x(secx)= sec x tan x(6) (arcsin x)1 =,】(arctanx)*= !1+f(cscx)= -cscxcotx(arccos x)* = -(flrcotx) = -1 +对(tnrsecx)|a-|V?T(“r

3、cscQ= |.v|V7T2. Rules(1) Ify(x), g(x) are differentiaba. g)g(x)y = f(兀)g3 :b. (f(x)g(x)y = fXx)gx) + f(X)gXx)t especially, (Cf(x)Y = Cfx) (Cisa constant):c. (竺mm)小) g(X)gl(如0), es(册晋dxdy(5) Parametric fonction dydx(3) Implicit Differentiation(4) Inverse fimction jv 1:= dx dxdx dx7W wh(“i thagg3. App

4、lications of DQriztivQ(1) Mean Value TlieoremSign of f1+MonotonicityIncreaseDecrease(3) Properties of curvesCritical point: f x) = 0 or DNESign of 厂+ConcavityConcaveConcaveupdownPoint of inflection: concavity changes.(2) Cham Rule y =些 dx(6) Polar Action冬=广血外“翻 dx广(&)cos&-厂 sin&(7) Vector (r(7j)* =

5、(/VXg V)b-aGiven f(x) is differentiable, f (c) = 11_, where c e (a, b).(2) Tangent and normalSlope of tangent Slope of nonnal = -1Linearization: /(x) a L(x) = /() + f ci)(x a).Second Dem atrve Test f n(a) 0 , local mui f a) J-x2r 1dx = arctan x + CJ 1 + x2I ( dx = arcsecx + Cxx2 U-substitiition (常见u

6、的选择分母,Steps: 1. Let u=u(x), find dll = u x)dx,f“ dx = arcsin + Cf -dx = arctan + C aaf= arcsec + CJa a底数,指数,角度等)7(2心)“G)厶= Integration by partsudv = MV,(or dx = uv-vudxTabular Integration (story about liu sinx, and ex )Mean Value theorem: (average alue of f (x) over1 fba. b) / (c) = f(x)dx .where c

7、e (, b).b-aJa 3ImptopQT IntQgml反常积分(两种形式,无穷积分,瑕积分) Integral on infinite intervalf /(x)JA = lim f(x)dx,ax J af f(x)dx = lim f(x)dxyJ *ctoo J af f(x)dx = f f(x)clx+ f f(x)clx= lim f(x)dx + hm f f(x)dx.J00 *JOC *JcdT-OoJd *X Jc Integrand with mfimte discontinuitiesf(x)dx = lim f(x)dx.f(x)dx = lim f(x)d

8、x,b(tcfib fMdx = f(x)dx + J fWdx = Jiin f(x)dx + im f(x)dx.4. RulesRiemann Sum (LRANL RRAM, MRANL Trapezoidal Rule)Q (x) + /g(x)dx = q /(jv)必+ /J; g(x)dx, fWdx = f(x)dx + f f(x)dxj7(x)J.r = 0J: f (x)dx =f (x)dx,f(xdx = 2 fx)dx (f (x)is even) -dJof(x)dx = 0(/(x)is odd)5. TheoremFundamental Tlieorem o

9、f Calculus 微积分基本宦理 厂 = 3: =/()一/, or/(b) = /(d) + f 厂気 fg=fg,6. Application of IntagmlGeneral form:牛 f : f(t)dt = /(%) a (x) - f(0(x) 0G)八Vblume: witli known cross sectionr(tg(x)dx、Horizontal Slicef(y)-g(y)_ upper functionlower function _ Right (uiKtionLcl !unclion_bArea: Vertical Slice |Ax)dx , A(x

10、) is die area of the cross section.Revolution: 7r R _ 厂Ja LOulcr radius Inner radiusShell Method: 2/rJ x)yA(旋转轴为 y-axis) or 2/rJ xydy (旋转轴为 x-axis)LengthIV. DiffQTnti:d Equation1.SeparNtion VariablQ =)=dx N(y)2.Logistic Equationw二 Jim P(t) = K ,where K is the em-iromneiital + e r 00capacity.3. Slope

11、 Fidd4. EulWs Method:1. Definition2. Tast for ComagQncQAssume tliat the following limit exists: p = limIl-XXZX =4+2 + + %+, Ratio Test00V an ConvergesO lim Sn = S 厶千“TOCXa) If pel, then 为an converges absolutely./i-i00b) If p 1, then 丫 cin diverges.;r-ic) If p = 1, then the test is inconclusive (the

12、series may converge or diverge). Integral Test Let Cln = f (fl) ,where f (x) is positive. decFeasiug and coHthmous for X 1.Both f(x)dx and,f converges or both diverges (同时收敛或同时发散,但是不相等). “1 Comparison TestAssume tliat there exists M 0 such that 0 an M.If f”】converges, then If 工/!-lalso converges.XXI

13、f 工勺】 diverges, then 工仇 alson-in-!diverges.Lmiit Comparison Test Let%and hnbe positive sequences. Assumelim H = LTO bIfXXL 0 then 工 converges if and only if 工 bn converges, n-lM-lb)If8X厶=s, andan converges, then 工 bnn-ln-lconverges.c)IfXXL = 0, and工bn converges, thenancom*erges.n-l;r-l3. Four Series

14、The geometric series a,J comerges if I r l 1 and diverges otherwise, /r-l U.二 1Harmonic Series Diverges.x (_1)Alternating Series terms are alternately positive and negative, e.g.工 Lcbmz Test fbr Altematmg Series Assume that ;/ is a positive sequence that is decreasmg andconverges to 0: q % 0, lim an

15、 = 0.-moc=0 +a (x-c) + 2 (x_c)- +q (x_c) +x Power Series 工an (x-c)n-0(i) Radius of ConvergencexEvery power series F(x)=a” (x_c) has a radius of convergence R , which is eitlier a nonnegath-e number ( /? 0 )or infiiiity( /? = oo).If R is finite, F(x) conveTges absolutely when |x c| R IfR = 8, F(x) co

16、m-erges absolutely for all X .DivergesConverges absolutelyDivergesc-Rcc-RPossible convergence at the endpoints(ii) Tenn-bv-term Differentiation and IntegrationAssume that F(x)=工(X c) has radius of convergence 7? 0 . Then is differentiable on /r-b且”=i a i= O)SCO) 负数没有偶次方根:0的任何次方根都是0,记作”5 = 0。当是奇数时,0

17、= 0,当是偶数时,2. 分数指数幕正数的分数指数幫的意义,规定:m atl = (a Ojnji e Nn 1) ain1an 0的正分数指数慕等于0, 0的负分数指数幕没有意义3.实数指数幕的运算性质(aO/seR)1 (a 0,m.n e Nn 1)(1) ar ar =r+v: (2) S) =a八:(3)() =ara5(二)指数函数及其性质1、指数函数的槪念:一般地,函数y = 0”(40,且。工1)叫做指数函数,英中x是自变量,函数的 泄义域为R注意:指数函数的底数的取值范用.底数不能是负数、零和12、指数函数的图象和性质al0a0值域y0在R上单调递增在R上单调递减非奇非偶函数

18、非奇非偶函数函数图象都过泄点(0, 1)函数图象都过建点(0, 1)二、对数函数()对数1. 对数的概念:一般地,如果a”=N(aO,dHl),那么数x叫做以a为底的对数,记作: x = oaN (一底数,N真数,logN 对数式)说明:注意底数的限制d0,且dHl两个重要对数:常用对数:以10为底的对数lg/V:(2)自然对数:以无理数 = 2.71828为底的对数InTV.指数式与对数式的互化幕值 真数a = NU loga N = b底数log, = 指数对数(-)对数的运算性质如果a0.且dHl, M0, N 沁 那么:loga(M N) = log M + logn N :log為=

19、 logM - log“N :log幺 M = n log M (fi e R)换底公式 log b = (a0,且 dHl; c0,且 CH1: /?0 ).log,利用换底公式推导下而的结论 log bn = logj?:m对数恒等式ah =b(二)对数函数1、概念:函数y = logflx(6/0,且。工1)叫做对数函数,其中x是自变量,左义域是(0, +8). 对数函数对底数的限制:(a0,且dHl).2、对数函数的性质:al0al0定义域x0值域为R值域为R在R上递增在R上递减函数图象都过 定点(b 0)函数图象都过定点(1, 0)(三)幕函数1、幕函数泄义:一般地,形如y = (a

20、 e /?)的函数称为幕函数,其中a为常数.2、泵函数性质归纳.(1)所有的幕函数在(0, +8)都有定义并且图象都过点(1, 1):(2)G0时,幕函数的图象通过原点,并且在区间10,+00)上是增函数.特别地,当Q1时,幕函数 的图象下凸:当0vavl时,幕函数的图象上凸;(3)GV0时,幕函数的图彖在区间(O.+oo)上是减函数.在第一象限内,当X从右边趋向原点时,图象 在y轴右方无限地逼近y轴正半轴,当x趋于+s时,图象在x轴上方无限地逼近x轴正半轴.三角函数基本知识点小结一.六种三角函数yXsin = cos& = rrtan = 2丄*yrrsec& = esc。=xy二.同角三角函数基本关系式 i.倒数关系2.商的关系sin a csca = 1:cosa seca = 1secacosa csca;cota =3.平方关系tana-cota = l:sin atan a =cosa cscasin a sec asin2 a + cos2 a = 1 ; 1 + tan2 a = sec2 a :1 + cot2 a = esc2 a三.两角和与差,二倍角公式 sin(a 0) = sin a cos p cos a sin p,c、 tana 土 tan0tan a(a 0)=1 + tan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论