圆的切点弦方程[参照分析]_第1页
圆的切点弦方程[参照分析]_第2页
圆的切点弦方程[参照分析]_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆的切点弦方程【方法】1.设出直线,再求解; 2.利用轨迹思想,用向量或平面几何知识求解。【问题】对于坐标平面内任一点,直线L:与圆O:究竟是什么关系呢?下面我们进行探究:一、当点M在圆O上时,直线L是圆的切线。二、当点M在圆O外时,1.直线L不是圆O的切线,下面证明之:圆心O到L的距离为,由在圆O外,得,故直线L与圆O相交.2.此时直线L与过点M的圆的切线又是什么关系呢?首先研究L的特征:易知:OML。(N为L与OM的交点)从而OAMA,MA为圆的一条切线,故直线L为过点M的圆的两条切线的两个切点所在的直线。事实上(另证),如图1,设过点M的圆O的两条切线为L1,L2,切点分别为A、B,则直

2、线MA:,直线MB:.点M的坐标满足直线MA与MB的方程, ,由此可见A、B的坐标均满足方程,由于两点确定一条直线直线AB的方程为。所以此时的直线L是经过点P的切点弦AB所在直线的方程,而不是圆O的切线。【注】上述点M、直线L实质上是射影几何中的极点和极线。特别的,当M在圆上时,极线即为切线。三、当点M在圆O内时,1.直线L也不是圆O的切线。下面给出证明:圆心O到L的距离为,由在圆O内,得 故直线L与圆O相离.2.此时直线L与圆的切线的关系又如何呢?首先研究L的特征:由上述探讨过程易知,直线LOM,此外,L一定过点P(P为两切线的交点,ABOM),从而L就在图2中过点P且与AB平行的位置处。事实上(另证),直线L的斜率,而直线OM的斜率,一方面,过点M与OM垂直的直线方程为即另一方面,将直线OM与L的方程联立,得到它们的交点P的坐标为,由(二)可知过点P的圆的切点弦所在直线的方程为,即,即为直线的方程。由此我们看到,直线L是由点M确定的。另外,直线L是过点M的弦(除O,M的弦)的两个端点的圆的两条切线的交点轨迹,证明如下:设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论