



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、。动点问题题型方法归纳动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、 直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、三角形边上动点1、( 2009 年齐齐哈尔市) 直线 y3 x 6 与坐标轴分别交于 A、B 两点, 动点 P、 Q 同时4从 O 点出发,同时到达A 点,运动停止点Q 沿线段 OA运动,速度为每秒1 个单
2、位长度,点 P沿路线 O B A运动( 1)直接写出 A、B 两点的坐标;( 2)设点 Q 的运动时间为 t 秒, OPQ 的面积为 S ,求出 S 与 t 之间的函数关系式;(3)当 S48P 的坐标,并直接写出以点O、 P、 Q 为顶点的平行四边形的第时,求出点5四个顶点 M 的坐标yBPO QA x提示:第( 2)问按点 P 到拐点 B 所有时间分段分类;第( 3)问是分类讨论:已知三定点O、 P、 Q ,探究第四点构成平行四边形时按已知线段身份不同分类- OP为边、 OQ为边, OP为边、 OQ为对角线, OP为对角线、 OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。精选资料,
3、欢迎下载。2、( 2009 年衡阳市)如图,AB 是 O的直径,弦BC=2cm, ABC=60o( 1)求 O的直径;( 2)若 D是 AB延长线上一点,连结 CD,当 BD长为多少时, CD与 O相切;( 3)若动点 E 以 2cm/s 的速度从A 点出发沿着AB方向运动, 同时动点F 以 1cm/s 的速度从B 点出发沿BC方向运动,设运动时间为t (s)(0t2) ,连结 EF,当 t 为何值时, BEF为直角三角形注意:第( 3)问按直角位置分类讨论CCCFFADAEBAOEBOBO图( 1)图( 2)图( 3)3、( 2009 重庆綦江)如图,已知抛物线y a( x 1)2 3 3(
4、 a0) 经过点 A(2,0) ,抛物线的顶点为 D ,过 O 作射线 OM AD 过顶点 D 平行于 x 轴的直线交射线OM 于点C , B 在 x 轴正半轴上,连结BC ( 1)求该抛物线的解析式;( 2)若动点 P 从点 O 出发,以每秒1 个长度单位的速度沿射线OM 运动,设点 P 运动的时间为 t( s) 问当 t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?( 3)若 OC OB ,动点 P 和动点 Q 分别从点 O 和点 B 同时出发,分别以每秒1 个长度单位和 2 个长度单位的速度沿OC 和 BO 运动,当其中一个点停止运动时另一个点也随之停止运动设它们的运
5、动M的时间为 t ( s) ,连接 PQ ,当 t 为何值时, 四边形 BCPQ 的yDCP精选资料,欢迎下载AOQB x。面积最小?并求出最小值及此时PQ 的长注意:发现并充分运用特殊角DAB=60当 OPQ面积最大时,四边形BCPQ的面积最小。二、特殊四边形边上动点4、( 2009 年吉林省)如图所示,菱形ABCD的边长为 6 厘米,B60从初始时刻开始,点 P 、Q 同时从 A点出发,点 P 以 1厘米 / 秒的速度沿 ACB 的方向运动, 点 Q以 2厘米/秒的速度沿 A BCD 的方向运动,当点Q 运动到D点时, P、Q两点同时停止运动,设P、 Q 运动的时间为x秒时, APQ 与
6、ABCy平重叠部分 的面积为方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:( 1)点 P 、 Q 从出发到相遇所用时间是秒;( 2)点 P 、Q 从开始运动到停止的过程中,当 APQ 是等边三角形时x 的值是秒;( 3)求 y 与 x 之间的函数关系式DCPBA Q提示:第 (3) 问按点 Q到拐点时间B、C 所有时间分段分类;提醒 -高相等的两个三角形面积比等于底边的比。5、( 2009 年哈尔滨)如图 1,在平面直角坐标系中,点O是坐标原点,四边形是菱形,ABCO点 A 的坐标为( 3 ,4),点 C在 x 轴的正半轴上,直线AC交 y 轴于点 M,AB边交 y 轴于点精
7、选资料,欢迎下载。H( 1)求直线AC的解析式;( 2)连接 BM,如图 2,动点 P 从点 A 出发,沿折线ABC方向以 2 个单位秒的速度向终点C匀速运动,设 PMB的面积为 S( S0 ),点 P 的运动时间为t 秒,求 S 与 t 之间的函数关系式(要求写出自变量t 的取值范围);( 3)在( 2)的条件下,当t为何值时, 与 互为余角,并求此时直线与直MPBBCOOP线 AC所夹锐角的正切值yAH BAyH BMOCxMOCx图( 1)2)问按点 P 到拐点 B 所用时间分段分类;注意:第(图( 2)第( 3)问发现 MBC=90, BCO与 ABM互余,画出点P 运动过程中, MP
8、B= ABM的两种情况,求出 t 值。利用 OB AC,再求 OP与 AC夹角正切值 .6、 (2009 年温州 ) 如图,在平面直角坐标系中,点A( 3 ,0) ,B(33 ,2) ,C( 0,2) 动点 D 以每秒 1 个单位的速度从点0 出发沿 OC向终点 C 运动,同时动点E 以每秒 2 个单位的速度从点 A 出发沿 AB向终点 B 运动过点 E 作 EF上 AB,交 BC于点 F,连结 DA、 DF设运动时间为 t 秒(1)求 ABC的度数;(2)当 t 为何值时, AB DF;(3)设四边形 AEFD的面积为 S 求 S 关于 t 的函数关系式; 若一抛物线y=x 2+mx经过动点
9、E,当 S23 时,求 m的取值范围 ( 写出答案即可 ) 注意:发现特殊性, DE OA精选资料,欢迎下载。7、( 07 黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且 AOC=60,点 B 的坐标是 (0,83) ,点 P 从点 C开始以每秒1 个单位长度的速度在线段CB上向点 B 移动,同时,点Q从点 O开始以每秒a( 1 a 3)个单位长度的速度沿射线OA方向移动,设 t (0t8) 秒后,直线PQ交 OB于点 D.( 1)求 AOB的度数及线段 OA的长;( 2)求经过 A, B,C 三点的抛物线的解析式;43 时,求 t 的值及此时直线 PQ的解析式;( 3)当 a
10、 3, OD3OAB 相似?当 a 为何值时,以( 4)当 a 为何值时,以O,P,Q, D为顶点的三角形与O,P, Q, D 为顶点的三角形与OAB 不相似?请给出你的结论,并加以证明.yBPCDAQxO8、( 08 黄冈)已知:如图,在直角梯形COAB 中, OC AB ,以 O 为原点建立平面直角坐标系, A, B,C 三点的坐标分别为A(8,0), B(810), C (0,4) ,点 D 为线段 BC 的中点,动点 P 从点 O 出发,以每秒 1 个单位的速度, 沿折线 OABD 的路线移动,移动的时间为t 秒( 1)求直线 BC 的解析式;( 2)若动点 P 在线段 OA 上移动,
11、 当 t 为何值时, 四边形 OPDC 的面积是梯形 COAB 面积的 2 ?7( 3)动点 P 从点 O 出发, 沿折线 OABD 的路线移动过程中,设 OPD 的面积为 S ,请直精选资料,欢迎下载。接写出 S 与 t 的函数关系式,并指出自变量t 的取值范围;( 4)当动点 P 在线段 AB 上移动时, 能否在线段OA 上找到一点 Q ,使四边形 CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由BByyDDCCOPAx OAx(此题备用)9、 (09年黄冈市 ) 如图 , 在平面直角坐标系xoy中 , 抛物线 y1 x2 4 x 10 与 x 轴的交点为18 9点 A, 与
12、 y 轴的交点为点 B. 过点 B 作 x 轴的平行线 BC, 交抛物线于点C, 连结 AC现有两动点P,Q 分别从 O,C 两点同时出发 , 点 P 以每秒 4 个单位的速度沿OA向终点 A移动 , 点 Q以每秒 1 个单位的速度沿CB向点 B移动 , 点 P 停止运动时 ,点 Q也同时停止运动 , 线段 OC,PQ相交于点 D, 过点 D作 DE OA, 交 CA于点 E, 射线 QE交 x 轴于点F设动点 P,Q 移动的时间为t ( 单位 : 秒 )(1) 求 A,B,C 三点的坐标和抛物线的顶点的坐标;(2) 当 t 为何值时 , 四边形 PQCA为平行四边形 ?请写出计算过程 ;(3
13、) 当 0t 9 时 , PQF 的面积是否总为定值?若是 , 求出此定值 ,若不是 , 请说明理由 ;2(4) 当 t 为何值时 , PQF为等腰三角形 ?请写出解答过程提示:第( 3)问用相似比的代换,得 PF=OA(定值)。第( 4)问按哪两边相等分类讨论 PQ=PF,PQ=FQ,QF=PF.精选资料,欢迎下载。三、直线上动点8、(2009 年湖南长沙)如图,二次函数yax2bxc( a0 )的图象与 x 轴交于 A、 B两点,与 y 轴相交于点 C 连结 AC、 BC,A、C 两点的坐标分别为A( 3,0) 、 C (0, 3) ,且当 x4 和 x2 时二次函数的函数值y 相等( 1
14、)求实数 a, b,c 的值;( 2)若点 M 、 N 同时从 B 点出发, 均以每秒1 个单位长度的速度分别沿BA、 BC 边运动,其中一个点到达终点时,另一点也随之停止运动当运动时间为t 秒时,连结MN ,将 BMN 沿 MN 翻折, B点恰好落在 AC 边上的 P 处,求 t 的值及点 P 的坐标;( 3)在( 2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以 B, N, Q 为项点的三角形与 ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由yPCN提示:第( 2)问发现AM O B特殊角 CAB=30 , CBA=60xBNPM为菱形;特殊图形四边形第(3)
15、 问注意到 ABC 为直角三角形后,按直角位置对应分类;先画出与ABC相似的 BNQ ,再判断是否在对称轴上。9 、( 2009眉山)如图,已知直线1yx1与y轴交于点Ax 轴交于点D2,与,抛物线yxbx c与直线交于A EB C两点,且B点坐标为(1,0)。12、两点,与 x 轴交于、2求该抛物线的解析式;动点 P 在 x 轴上移动,当 PAE是直角三角形时,求点P 的坐标 P。在抛物线的对称轴上找一点M,使 | AMMC |的值最大,求出点M的坐标。提示:第( 2)问按直角位置分类讨论后画出图形-P 为直角顶点AE 为斜边时,以AE精选资料,欢迎下载。为直径画圆与x 轴交点即为所求点P,
16、 A 为直角顶点时,过点A 作 AE 垂线交 x 轴于点 P, E 为直角顶点时,作法同;第( 3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。10、(2009 年兰州)如图,正方形 ABCD中,点 A、B 的坐标分别为( 0,10),( 8,4), 点C在第一象限 动点 P 在正方形 ABCD的边上, 从点 A 出发沿 A B CD匀速运动, 同时动点 Q以相同速度在 x 轴正半轴上运动, 当 P 点到达 D点时,两点同时停止运动, 设运动的时间为 t 秒(1) 当 P 点在边 AB上运动时,点 Q的横坐标 x (长度单位)关于运动时间 t (秒)的函数图象如图所示,请写出点 Q
17、开始运动时的坐标及点 P 运动速度;(2) 求正方形边长及顶点 C的坐标;(3) 在( 1)中当t为何值时,的面积最大,并求此时P点的坐标;OPQ(4) 如果点 P、 Q保持原速度不变,当点 P 沿 A B C D匀速运动时, OP与 PQ能否相等,若能,写出所有符合条件的 t 的值;若不能,请说明理由注意:第( 4)问按点 P 分别在 AB、 BC、CD边上分类讨论;求t 值时,灵活运用等腰三角形“三线合一”。11、( 2009 年北京市)如图,在平面直角坐标系xOy 中, ABC三个顶点的坐标分别为A 6,0 ,B 6,0 ,C 0,413 ,延长 AC到点 D, 使 CD= AC , 过
18、点 D 作 DE AB 交 BC的延长线于点 E.2( 1)求 D点的坐标;( 2)作 C 点关于直线 DE的对称点 F, 分别连结 DF、 EF,若过 B 点的直线 y kxb 将四边形 CDFE分成周长相等的两个四边形,确定此直线的解析式;( 3)设 G为 y 轴上一点, 点 P 从直线 ykx b 与y轴的交点出发, 先沿 y 轴到达 G点,再沿 GA到达 A点,若 P 点在 y 轴上运动的速度是它在直线GA上精选资料,欢迎下载。运动速度的 2 倍,试确定 G点的位置,使 P 点按照上述要求到达 A 点所用的时间最短。 (要求:简述确定 G点位置的方法,但不要求证明)提示:第()问,平分
19、周长时,直线过菱形的中心;第()问,转化为点到的距离加到()中直线的距离和最小;发现()中直线与轴夹角为. 见“最短路线问题”专题。12、 (2009 年上海市 )ADADADPPP已知 ABC=90,QBCB(Q)图 2图 1段 BD上的动点,点 Q在射线 AB 上,且满足AB=2,BC=3,ADCBC BC,P为线PQAD图 3所示)PCAB Q(如图 1( 1)当 AD=2,且点 Q 与点 B重合时(如图2 所示),求线段 PC 的长;( 2)在图 8 中,联结当AD3QABB、QxAP,且点在线段上时,设点,2之间的距离为SAPQ表示 APQ的面积, S PBC 表示 PBC 的面积,
20、求 y 关于 x 的函数y ,其中 S APQSPBC解析式,并写出函数定义域;( 3)当 AD AB ,且点 Q 在线段 AB 的延长线上时(如图3 所示),求QPC 的大小注意:第( 2)问,求动态问题中的变量取值范围时,先动手操作找到运动始、末两个位置变量的取值, 然后再根据运动的特点确定满足条件的变量的取值范围。当 PC BD时,点Q、 B 重合, x 获得最小值;当 P 与 D 重合时, x 获得最大值。第( 3)问,灵活运用 SSA判定两三角形相似,即两个锐角三角形或两个钝角三角形可用SSA来判定两个三角形相似;或者用同一法;或者证BQP BCP,得 B、 Q、 C、 P 四点共圆
21、也可求解。13、(08 宜昌)如图,在 RtABC中, ABAC,P 是边 AB(含端点)上的动点过 P 作 BC 的垂线 PR,R为垂足, PRB的平分线与 AB 相交于点 S,在线段 RS上存在一点 T,若以线段 PT为一边作正方形 PTEF,其顶点 E,F 恰好分别在边 BC,AC上(1)ABC与 SBR是否相似,说明理由;(2)请你探索线段 TS与 PA的长度之间的关系;精选资料,欢迎下载。( 3)设边 AB1,当 P 在边 AB(含端点)上运动时,请你探索正方形 PTEF的面积 y 的最小值和最大值BBRTSRTSEEPPCFACFA(第 13 题)(第 13 题)提示:第( 3)问
22、,关键是找到并画出满足条件时最大、最小图形;当p 运动到使 T 与 R 重合时, PA=TS为最大;当P 与 A 重合时, PA最小。此问与上题中求取值范围类似。14、 (2009 年河北 ) 如图,在Rt ABC中, C=90, AC = 3 , AB = 5 点 P从点 C出发沿 CA以每秒 1 个单位长的速度向点A匀速运动,到达点A 后立刻以原来的速度沿AC返回;点 Q从点 A 出发沿 AB以每秒 1 个单位长的速度向点 B 匀速运动伴随着 P、 Q的运动, DE保持垂直平分 PQ,且交 PQ于点 D,交折线 QB- BC- CP于点 E点 P、Q同时出发,当点 Q到达点 B 时停止运动
23、,点 P 也随之停止设点 P、 Q运动的时间是 t 秒( t 0)( 1)当 t= 2 时, AP =,点 Q到 AC的距离是;( 2)在点 P 从 C向 A 运动的过程中,求 APQ的面积 S 与 t 的函数关系式; (不必写出 t 的取值范围)( 3)在点 E从 B 向 C运动的过程中,四边形 QBED能否成为直角梯形?若能,求 t 的值若不能,请说明理由;( 4)当 DE经过点 C时,请直接 写出 t 的值BEQDAPC提示:()按哪两边平行分类,按要求画出图形,再结合图形性质求出t 值;有二种成立的情形,;()按点 P 运动方向分类, 按要求画出图形再结合图形性质求出t 值;有二种情形
24、,t 时,时精选资料,欢迎下载。15、(2009 年包头) 已知二次函数y ax2bx c( a0 )的图象经过点A(1,0) , B(2,0) ,C (0, 2) ,直线 x m ( m 2)与 x 轴交于点 D ( 1)求二次函数的解析式;( 2)在直线 xm ( m2 )上有一点 E (点 E 在第四象限),使得 E、 D、B 为顶点的三角形与以 A、 O、C 为顶点的三角形相似,求E 点坐标(用含m 的代数式表示) ;( 3)在( 2)成立的条件下, 抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由提示:第
25、( 2)问,按对应锐角不同分类讨论,有两种情形;第( 3)问,四边形ABEF为平行四边形时,E、F 两点纵坐标相等,且AB=EF,对第( 2)问中两种情形分别讨论。四、抛物线上动点16、( 2009 年湖北十堰市) 如图, 已知抛物线y ax2bx3( a )与 x 轴交于点A,0(10) 和点 B ( 3, 0) ,与 y 轴交于点 C(1) 求抛物线的解析式;(2)设抛物线的对称轴与 x 轴交于点M,问在对称轴上是否存在点,使为等腰三角PCMP形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由(3)如图 ,若点 E 为第二象限抛物线上一动点,连接BE、 CE,求四边形B
26、OCE面积的最大值,并求此时 E 点的坐标注意:第( 2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标 - C 为顶点时,以C为圆心 CM为半径画弧,与对称轴交点即为所求点P, M为顶点时,以M为圆心 MC为半径画弧,与对称轴交点即为所求点P, P 为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。第( 3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。精选资料,欢迎下载。17、( 2009 年黄石市)正方形ABCD 在如图所示的平面直角坐标系中,A 在 x 轴正半轴上,D 在 y 轴的负半轴上,AB 交 y 轴正半轴于 E, BC 交 x 轴负半轴于 F , OE1 ,抛物线yax2bx4 过 A、D、F 三点( 1)求抛物线的解析式;( 2)Q 是抛物线上 D、F 间的一点, 过 Q 点作平行于 x 轴的直线交边 AD 于 M ,交 BC 所在直线于N,若3,则判断四边形 AFQM的形状;S四边形AFQMSF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全工程师课件资源
- 挂耳咖啡、胶囊咖啡、饮料生产项目可行性研究报告写作模板-拿地备案
- 2025年新事业单位招聘考试时事政治考试题库附带答案
- 中学生行为规范
- 大口径球面镜透过率测量光机系统研究
- 2025年辽宁省五校物理高二第二学期期末教学质量检测模拟试题含解析
- 新疆维吾尔自治区奎屯市2024-2025学年部编版八年级上学期历史期末测试卷
- 2024-2025学年四川省宜宾市叙州区八年级(下)期末历史试卷
- 2025届湖南省邵阳市洞口县第九中学物理高一第二学期期末联考试题含解析
- 技术支持服务协议及质量保证合同
- 旅游保险行业发展建议
- 《集装箱基本知识》课件
- 静脉输液行业标准
- 标准道闸说明书V2.1
- 广告制作、宣传用品、宣传物料采购项目投标方案(技术方案)
- 化工和危险化学品生产经营单位二十条重大隐患判定标准释义(中化协)
- 医疗废物的处理及职业防护
- 滴滴出行内部控制案例分析
- 钢铁工业废水治理及回用工程技术规范(HJ 2019-2012)
- 产科特殊用药观察和护理
- 中国石油夏季安全生产“八防”措施
评论
0/150
提交评论