下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【MeiWei_81 重点借鉴文档】正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。三:猜想及其他可能的证明:1.正方形: 因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或 者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形。由图示可知,竖直方向截取正方体,得到的截面为正方形。2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。其次,当长宽不等的矩形截
2、面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。例如,正方体的六个对角面都是矩形3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:MeiWei_81 重点借鉴文档】MeiWei_81 重点借鉴文档】=由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:= 得到:正三棱锥5. 猜想之外的截面形状:
3、(1)菱形:如下图所示,当 A,B 为所在棱的中点时,该截面为菱形:(2 )梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:MeiWei_81 重点借鉴文档】MeiWei_81 重点借鉴文档】(3)五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。(4)六边形:如图所示,可以截得六边形截面:拓展探究: 1.正方体 最大面积的截面三角形 2.正方体最大面积的截面四边形 3.最大面积的截面形状 4.截面五边形、六边形性质1. 正方体 最大面积的截面三角形:MeiWei_81 重点借鉴文档】MeiWei_81 重点借鉴文
4、档】如该图所示可证明由三角面对角线构成的三角形2. 正方体最大面积的截面四边形 : 通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形 根据四边形的面积公式:面积 = 长 R 宽联系正方体图形:得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大, 又因为在各个情况下的宽不变。则由猜想得到: “最大面积的截面四边形:由两条平行的面对角线和两对平行棱构成的四边形。 ”3. 最大面积的截面形状: 正方体的截面可以分为:三角形、正方形、梯形、矩形、平行四边形、五边形、六边形、正六边形。其中 三角形还分为锐角三角型、等边、等腰三角形。梯形分位非等腰梯形和等腰梯形。首先比较三角形与五边形和六边形,所得这三种截面的情况有一共同特点:不能完整在该截面所在平面在 正方体内所截的范围的最大值,有部分空间空出。因此可以得到:最大面积一定是四边形。 所以最大面积的截面形状:即最大截面四边形(猜想)。初步推断为如图所示的矩形:4. 截面五边形、六边形性质通过课本及资料查询知:截面五边形:有两组边互相平行.截面六边形:三组对边平行的六边形正方体的截面图MeiWei_81 重点借鉴文档】MeiWei_81 重点借鉴文档】四:结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、 非矩形的平行四边形、非等腰梯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《生态学》2021-2022学年第一学期期末试卷
- 淮阴师范学院《近代物理实验》2022-2023学年第一学期期末试卷
- 淮阴师范学院《中学数学学科课程标准与教材分析》2022-2023学年第一学期期末试卷
- 淮阴师范学院《电子商务法律与法规》2023-2024学年第一学期期末试卷
- 淮阴师范学院《电气控制与PLC》2022-2023学年期末试卷
- DB3304T028-2024机关事务管理 保洁服务规范
- DB 1502-T 026-2024多晶硅生产企业能源管理规范
- 文书模板-《老年人观赏类活动策划方案》
- 搪瓷制品在环保行业中的应用与发展趋势考核试卷
- 低温仓储的网络与信息安全管理考核试卷
- 《唱歌 洋娃娃和小熊跳舞(简谱、五线谱)》课件
- 2024年历年专业英语四级考试真题及答案
- 四川省高职单招汽车类《汽车机械基础》复习备考试题库(含答案)
- 漏洞扫描报告模板
- 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)解读
- 物业管理服务劳务派遣 投标方案(技术方案)
- 骨科健康宣教处方
- DLT 5285-2018 输变电工程架空导线(800mm以下)及地线液压压接工艺规程
- 2024年国家保安员资格考试题库及参考答案(完整版)
- 幼儿园安全教育课件:《过马路》
- 过桥垫资合同模板
评论
0/150
提交评论